|
from dataclasses import dataclass |
|
from typing import Optional, Tuple, Union |
|
|
|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
|
|
from ..configuration_utils import ConfigMixin, register_to_config |
|
from ..modeling_utils import ModelMixin |
|
from ..utils import BaseOutput |
|
from .unet_blocks import UNetMidBlock2D, get_down_block, get_up_block |
|
|
|
|
|
@dataclass |
|
class DecoderOutput(BaseOutput): |
|
""" |
|
Output of decoding method. |
|
|
|
Args: |
|
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): |
|
Decoded output sample of the model. Output of the last layer of the model. |
|
""" |
|
|
|
sample: torch.FloatTensor |
|
|
|
|
|
@dataclass |
|
class VQEncoderOutput(BaseOutput): |
|
""" |
|
Output of VQModel encoding method. |
|
|
|
Args: |
|
latents (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): |
|
Encoded output sample of the model. Output of the last layer of the model. |
|
""" |
|
|
|
latents: torch.FloatTensor |
|
|
|
|
|
@dataclass |
|
class AutoencoderKLOutput(BaseOutput): |
|
""" |
|
Output of AutoencoderKL encoding method. |
|
|
|
Args: |
|
latent_dist (`DiagonalGaussianDistribution`): |
|
Encoded outputs of `Encoder` represented as the mean and logvar of `DiagonalGaussianDistribution`. |
|
`DiagonalGaussianDistribution` allows for sampling latents from the distribution. |
|
""" |
|
|
|
latent_dist: "DiagonalGaussianDistribution" |
|
|
|
|
|
class Encoder(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels=3, |
|
out_channels=3, |
|
down_block_types=("DownEncoderBlock2D",), |
|
block_out_channels=(64,), |
|
layers_per_block=2, |
|
act_fn="silu", |
|
double_z=True, |
|
): |
|
super().__init__() |
|
self.layers_per_block = layers_per_block |
|
|
|
self.conv_in = torch.nn.Conv2d(in_channels, block_out_channels[0], kernel_size=3, stride=1, padding=1) |
|
|
|
self.mid_block = None |
|
self.down_blocks = nn.ModuleList([]) |
|
|
|
|
|
output_channel = block_out_channels[0] |
|
for i, down_block_type in enumerate(down_block_types): |
|
input_channel = output_channel |
|
output_channel = block_out_channels[i] |
|
is_final_block = i == len(block_out_channels) - 1 |
|
|
|
down_block = get_down_block( |
|
down_block_type, |
|
num_layers=self.layers_per_block, |
|
in_channels=input_channel, |
|
out_channels=output_channel, |
|
add_downsample=not is_final_block, |
|
resnet_eps=1e-6, |
|
downsample_padding=0, |
|
resnet_act_fn=act_fn, |
|
attn_num_head_channels=None, |
|
temb_channels=None, |
|
) |
|
self.down_blocks.append(down_block) |
|
|
|
|
|
self.mid_block = UNetMidBlock2D( |
|
in_channels=block_out_channels[-1], |
|
resnet_eps=1e-6, |
|
resnet_act_fn=act_fn, |
|
output_scale_factor=1, |
|
resnet_time_scale_shift="default", |
|
attn_num_head_channels=None, |
|
resnet_groups=32, |
|
temb_channels=None, |
|
) |
|
|
|
|
|
num_groups_out = 32 |
|
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[-1], num_groups=num_groups_out, eps=1e-6) |
|
self.conv_act = nn.SiLU() |
|
|
|
conv_out_channels = 2 * out_channels if double_z else out_channels |
|
self.conv_out = nn.Conv2d(block_out_channels[-1], conv_out_channels, 3, padding=1) |
|
|
|
def forward(self, x): |
|
sample = x |
|
sample = self.conv_in(sample) |
|
|
|
|
|
for down_block in self.down_blocks: |
|
sample = down_block(sample) |
|
|
|
|
|
sample = self.mid_block(sample) |
|
|
|
|
|
sample = self.conv_norm_out(sample) |
|
sample = self.conv_act(sample) |
|
sample = self.conv_out(sample) |
|
|
|
return sample |
|
|
|
|
|
class Decoder(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels=3, |
|
out_channels=3, |
|
up_block_types=("UpDecoderBlock2D",), |
|
block_out_channels=(64,), |
|
layers_per_block=2, |
|
act_fn="silu", |
|
): |
|
super().__init__() |
|
self.layers_per_block = layers_per_block |
|
|
|
self.conv_in = nn.Conv2d(in_channels, block_out_channels[-1], kernel_size=3, stride=1, padding=1) |
|
|
|
self.mid_block = None |
|
self.up_blocks = nn.ModuleList([]) |
|
|
|
|
|
self.mid_block = UNetMidBlock2D( |
|
in_channels=block_out_channels[-1], |
|
resnet_eps=1e-6, |
|
resnet_act_fn=act_fn, |
|
output_scale_factor=1, |
|
resnet_time_scale_shift="default", |
|
attn_num_head_channels=None, |
|
resnet_groups=32, |
|
temb_channels=None, |
|
) |
|
|
|
|
|
reversed_block_out_channels = list(reversed(block_out_channels)) |
|
output_channel = reversed_block_out_channels[0] |
|
for i, up_block_type in enumerate(up_block_types): |
|
prev_output_channel = output_channel |
|
output_channel = reversed_block_out_channels[i] |
|
|
|
is_final_block = i == len(block_out_channels) - 1 |
|
|
|
up_block = get_up_block( |
|
up_block_type, |
|
num_layers=self.layers_per_block + 1, |
|
in_channels=prev_output_channel, |
|
out_channels=output_channel, |
|
prev_output_channel=None, |
|
add_upsample=not is_final_block, |
|
resnet_eps=1e-6, |
|
resnet_act_fn=act_fn, |
|
attn_num_head_channels=None, |
|
temb_channels=None, |
|
) |
|
self.up_blocks.append(up_block) |
|
prev_output_channel = output_channel |
|
|
|
|
|
num_groups_out = 32 |
|
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=num_groups_out, eps=1e-6) |
|
self.conv_act = nn.SiLU() |
|
self.conv_out = nn.Conv2d(block_out_channels[0], out_channels, 3, padding=1) |
|
|
|
def forward(self, z): |
|
sample = z |
|
sample = self.conv_in(sample) |
|
|
|
|
|
sample = self.mid_block(sample) |
|
|
|
|
|
for up_block in self.up_blocks: |
|
sample = up_block(sample) |
|
|
|
|
|
sample = self.conv_norm_out(sample) |
|
sample = self.conv_act(sample) |
|
sample = self.conv_out(sample) |
|
|
|
return sample |
|
|
|
|
|
class VectorQuantizer(nn.Module): |
|
""" |
|
Improved version over VectorQuantizer, can be used as a drop-in replacement. Mostly avoids costly matrix |
|
multiplications and allows for post-hoc remapping of indices. |
|
""" |
|
|
|
|
|
|
|
|
|
def __init__(self, n_e, e_dim, beta, remap=None, unknown_index="random", sane_index_shape=False, legacy=True): |
|
super().__init__() |
|
self.n_e = n_e |
|
self.e_dim = e_dim |
|
self.beta = beta |
|
self.legacy = legacy |
|
|
|
self.embedding = nn.Embedding(self.n_e, self.e_dim) |
|
self.embedding.weight.data.uniform_(-1.0 / self.n_e, 1.0 / self.n_e) |
|
|
|
self.remap = remap |
|
if self.remap is not None: |
|
self.register_buffer("used", torch.tensor(np.load(self.remap))) |
|
self.re_embed = self.used.shape[0] |
|
self.unknown_index = unknown_index |
|
if self.unknown_index == "extra": |
|
self.unknown_index = self.re_embed |
|
self.re_embed = self.re_embed + 1 |
|
print( |
|
f"Remapping {self.n_e} indices to {self.re_embed} indices. " |
|
f"Using {self.unknown_index} for unknown indices." |
|
) |
|
else: |
|
self.re_embed = n_e |
|
|
|
self.sane_index_shape = sane_index_shape |
|
|
|
def remap_to_used(self, inds): |
|
ishape = inds.shape |
|
assert len(ishape) > 1 |
|
inds = inds.reshape(ishape[0], -1) |
|
used = self.used.to(inds) |
|
match = (inds[:, :, None] == used[None, None, ...]).long() |
|
new = match.argmax(-1) |
|
unknown = match.sum(2) < 1 |
|
if self.unknown_index == "random": |
|
new[unknown] = torch.randint(0, self.re_embed, size=new[unknown].shape).to(device=new.device) |
|
else: |
|
new[unknown] = self.unknown_index |
|
return new.reshape(ishape) |
|
|
|
def unmap_to_all(self, inds): |
|
ishape = inds.shape |
|
assert len(ishape) > 1 |
|
inds = inds.reshape(ishape[0], -1) |
|
used = self.used.to(inds) |
|
if self.re_embed > self.used.shape[0]: |
|
inds[inds >= self.used.shape[0]] = 0 |
|
back = torch.gather(used[None, :][inds.shape[0] * [0], :], 1, inds) |
|
return back.reshape(ishape) |
|
|
|
def forward(self, z): |
|
|
|
z = z.permute(0, 2, 3, 1).contiguous() |
|
z_flattened = z.view(-1, self.e_dim) |
|
|
|
|
|
d = ( |
|
torch.sum(z_flattened**2, dim=1, keepdim=True) |
|
+ torch.sum(self.embedding.weight**2, dim=1) |
|
- 2 * torch.einsum("bd,dn->bn", z_flattened, self.embedding.weight.t()) |
|
) |
|
|
|
min_encoding_indices = torch.argmin(d, dim=1) |
|
z_q = self.embedding(min_encoding_indices).view(z.shape) |
|
perplexity = None |
|
min_encodings = None |
|
|
|
|
|
if not self.legacy: |
|
loss = self.beta * torch.mean((z_q.detach() - z) ** 2) + torch.mean((z_q - z.detach()) ** 2) |
|
else: |
|
loss = torch.mean((z_q.detach() - z) ** 2) + self.beta * torch.mean((z_q - z.detach()) ** 2) |
|
|
|
|
|
z_q = z + (z_q - z).detach() |
|
|
|
|
|
z_q = z_q.permute(0, 3, 1, 2).contiguous() |
|
|
|
if self.remap is not None: |
|
min_encoding_indices = min_encoding_indices.reshape(z.shape[0], -1) |
|
min_encoding_indices = self.remap_to_used(min_encoding_indices) |
|
min_encoding_indices = min_encoding_indices.reshape(-1, 1) |
|
|
|
if self.sane_index_shape: |
|
min_encoding_indices = min_encoding_indices.reshape(z_q.shape[0], z_q.shape[2], z_q.shape[3]) |
|
|
|
return z_q, loss, (perplexity, min_encodings, min_encoding_indices) |
|
|
|
def get_codebook_entry(self, indices, shape): |
|
|
|
if self.remap is not None: |
|
indices = indices.reshape(shape[0], -1) |
|
indices = self.unmap_to_all(indices) |
|
indices = indices.reshape(-1) |
|
|
|
|
|
z_q = self.embedding(indices) |
|
|
|
if shape is not None: |
|
z_q = z_q.view(shape) |
|
|
|
z_q = z_q.permute(0, 3, 1, 2).contiguous() |
|
|
|
return z_q |
|
|
|
|
|
class DiagonalGaussianDistribution(object): |
|
def __init__(self, parameters, deterministic=False): |
|
self.parameters = parameters |
|
self.mean, self.logvar = torch.chunk(parameters, 2, dim=1) |
|
self.logvar = torch.clamp(self.logvar, -30.0, 20.0) |
|
self.deterministic = deterministic |
|
self.std = torch.exp(0.5 * self.logvar) |
|
self.var = torch.exp(self.logvar) |
|
if self.deterministic: |
|
self.var = self.std = torch.zeros_like(self.mean).to(device=self.parameters.device) |
|
|
|
def sample(self, generator: Optional[torch.Generator] = None) -> torch.FloatTensor: |
|
device = self.parameters.device |
|
sample_device = "cpu" if device.type == "mps" else device |
|
sample = torch.randn(self.mean.shape, generator=generator, device=sample_device).to(device) |
|
x = self.mean + self.std * sample |
|
return x |
|
|
|
def kl(self, other=None): |
|
if self.deterministic: |
|
return torch.Tensor([0.0]) |
|
else: |
|
if other is None: |
|
return 0.5 * torch.sum(torch.pow(self.mean, 2) + self.var - 1.0 - self.logvar, dim=[1, 2, 3]) |
|
else: |
|
return 0.5 * torch.sum( |
|
torch.pow(self.mean - other.mean, 2) / other.var |
|
+ self.var / other.var |
|
- 1.0 |
|
- self.logvar |
|
+ other.logvar, |
|
dim=[1, 2, 3], |
|
) |
|
|
|
def nll(self, sample, dims=[1, 2, 3]): |
|
if self.deterministic: |
|
return torch.Tensor([0.0]) |
|
logtwopi = np.log(2.0 * np.pi) |
|
return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var, dim=dims) |
|
|
|
def mode(self): |
|
return self.mean |
|
|
|
|
|
class VQModel(ModelMixin, ConfigMixin): |
|
r"""VQ-VAE model from the paper Neural Discrete Representation Learning by Aaron van den Oord, Oriol Vinyals and Koray |
|
Kavukcuoglu. |
|
|
|
This model inherits from [`ModelMixin`]. Check the superclass documentation for the generic methods the library |
|
implements for all the model (such as downloading or saving, etc.) |
|
|
|
Parameters: |
|
in_channels (int, *optional*, defaults to 3): Number of channels in the input image. |
|
out_channels (int, *optional*, defaults to 3): Number of channels in the output. |
|
down_block_types (`Tuple[str]`, *optional*, defaults to : |
|
obj:`("DownEncoderBlock2D",)`): Tuple of downsample block types. |
|
up_block_types (`Tuple[str]`, *optional*, defaults to : |
|
obj:`("UpDecoderBlock2D",)`): Tuple of upsample block types. |
|
block_out_channels (`Tuple[int]`, *optional*, defaults to : |
|
obj:`(64,)`): Tuple of block output channels. |
|
act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use. |
|
latent_channels (`int`, *optional*, defaults to `3`): Number of channels in the latent space. |
|
sample_size (`int`, *optional*, defaults to `32`): TODO |
|
num_vq_embeddings (`int`, *optional*, defaults to `256`): Number of codebook vectors in the VQ-VAE. |
|
""" |
|
|
|
@register_to_config |
|
def __init__( |
|
self, |
|
in_channels: int = 3, |
|
out_channels: int = 3, |
|
down_block_types: Tuple[str] = ("DownEncoderBlock2D",), |
|
up_block_types: Tuple[str] = ("UpDecoderBlock2D",), |
|
block_out_channels: Tuple[int] = (64,), |
|
layers_per_block: int = 1, |
|
act_fn: str = "silu", |
|
latent_channels: int = 3, |
|
sample_size: int = 32, |
|
num_vq_embeddings: int = 256, |
|
): |
|
super().__init__() |
|
|
|
|
|
self.encoder = Encoder( |
|
in_channels=in_channels, |
|
out_channels=latent_channels, |
|
down_block_types=down_block_types, |
|
block_out_channels=block_out_channels, |
|
layers_per_block=layers_per_block, |
|
act_fn=act_fn, |
|
double_z=False, |
|
) |
|
|
|
self.quant_conv = torch.nn.Conv2d(latent_channels, latent_channels, 1) |
|
self.quantize = VectorQuantizer( |
|
num_vq_embeddings, latent_channels, beta=0.25, remap=None, sane_index_shape=False |
|
) |
|
self.post_quant_conv = torch.nn.Conv2d(latent_channels, latent_channels, 1) |
|
|
|
|
|
self.decoder = Decoder( |
|
in_channels=latent_channels, |
|
out_channels=out_channels, |
|
up_block_types=up_block_types, |
|
block_out_channels=block_out_channels, |
|
layers_per_block=layers_per_block, |
|
act_fn=act_fn, |
|
) |
|
|
|
def encode(self, x: torch.FloatTensor, return_dict: bool = True) -> VQEncoderOutput: |
|
h = self.encoder(x) |
|
h = self.quant_conv(h) |
|
|
|
if not return_dict: |
|
return (h,) |
|
|
|
return VQEncoderOutput(latents=h) |
|
|
|
def decode( |
|
self, h: torch.FloatTensor, force_not_quantize: bool = False, return_dict: bool = True |
|
) -> Union[DecoderOutput, torch.FloatTensor]: |
|
|
|
if not force_not_quantize: |
|
quant, emb_loss, info = self.quantize(h) |
|
else: |
|
quant = h |
|
quant = self.post_quant_conv(quant) |
|
dec = self.decoder(quant) |
|
|
|
if not return_dict: |
|
return (dec,) |
|
|
|
return DecoderOutput(sample=dec) |
|
|
|
def forward(self, sample: torch.FloatTensor, return_dict: bool = True) -> Union[DecoderOutput, torch.FloatTensor]: |
|
r""" |
|
Args: |
|
sample (`torch.FloatTensor`): Input sample. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`DecoderOutput`] instead of a plain tuple. |
|
""" |
|
x = sample |
|
h = self.encode(x).latents |
|
dec = self.decode(h).sample |
|
|
|
if not return_dict: |
|
return (dec,) |
|
|
|
return DecoderOutput(sample=dec) |
|
|
|
|
|
class AutoencoderKL(ModelMixin, ConfigMixin): |
|
r"""Variational Autoencoder (VAE) model with KL loss from the paper Auto-Encoding Variational Bayes by Diederik P. Kingma |
|
and Max Welling. |
|
|
|
This model inherits from [`ModelMixin`]. Check the superclass documentation for the generic methods the library |
|
implements for all the model (such as downloading or saving, etc.) |
|
|
|
Parameters: |
|
in_channels (int, *optional*, defaults to 3): Number of channels in the input image. |
|
out_channels (int, *optional*, defaults to 3): Number of channels in the output. |
|
down_block_types (`Tuple[str]`, *optional*, defaults to : |
|
obj:`("DownEncoderBlock2D",)`): Tuple of downsample block types. |
|
up_block_types (`Tuple[str]`, *optional*, defaults to : |
|
obj:`("UpDecoderBlock2D",)`): Tuple of upsample block types. |
|
block_out_channels (`Tuple[int]`, *optional*, defaults to : |
|
obj:`(64,)`): Tuple of block output channels. |
|
act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use. |
|
latent_channels (`int`, *optional*, defaults to `4`): Number of channels in the latent space. |
|
sample_size (`int`, *optional*, defaults to `32`): TODO |
|
""" |
|
|
|
@register_to_config |
|
def __init__( |
|
self, |
|
in_channels: int = 3, |
|
out_channels: int = 3, |
|
down_block_types: Tuple[str] = ("DownEncoderBlock2D",), |
|
up_block_types: Tuple[str] = ("UpDecoderBlock2D",), |
|
block_out_channels: Tuple[int] = (64,), |
|
layers_per_block: int = 1, |
|
act_fn: str = "silu", |
|
latent_channels: int = 4, |
|
sample_size: int = 32, |
|
): |
|
super().__init__() |
|
|
|
|
|
self.encoder = Encoder( |
|
in_channels=in_channels, |
|
out_channels=latent_channels, |
|
down_block_types=down_block_types, |
|
block_out_channels=block_out_channels, |
|
layers_per_block=layers_per_block, |
|
act_fn=act_fn, |
|
double_z=True, |
|
) |
|
|
|
|
|
self.decoder = Decoder( |
|
in_channels=latent_channels, |
|
out_channels=out_channels, |
|
up_block_types=up_block_types, |
|
block_out_channels=block_out_channels, |
|
layers_per_block=layers_per_block, |
|
act_fn=act_fn, |
|
) |
|
|
|
self.quant_conv = torch.nn.Conv2d(2 * latent_channels, 2 * latent_channels, 1) |
|
self.post_quant_conv = torch.nn.Conv2d(latent_channels, latent_channels, 1) |
|
|
|
def encode(self, x: torch.FloatTensor, return_dict: bool = True) -> AutoencoderKLOutput: |
|
h = self.encoder(x) |
|
moments = self.quant_conv(h) |
|
posterior = DiagonalGaussianDistribution(moments) |
|
|
|
if not return_dict: |
|
return (posterior,) |
|
|
|
return AutoencoderKLOutput(latent_dist=posterior) |
|
|
|
def decode(self, z: torch.FloatTensor, return_dict: bool = True) -> Union[DecoderOutput, torch.FloatTensor]: |
|
z = self.post_quant_conv(z) |
|
dec = self.decoder(z) |
|
|
|
if not return_dict: |
|
return (dec,) |
|
|
|
return DecoderOutput(sample=dec) |
|
|
|
def forward( |
|
self, sample: torch.FloatTensor, sample_posterior: bool = False, return_dict: bool = True |
|
) -> Union[DecoderOutput, torch.FloatTensor]: |
|
r""" |
|
Args: |
|
sample (`torch.FloatTensor`): Input sample. |
|
sample_posterior (`bool`, *optional*, defaults to `False`): |
|
Whether to sample from the posterior. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`DecoderOutput`] instead of a plain tuple. |
|
""" |
|
x = sample |
|
posterior = self.encode(x).latent_dist |
|
if sample_posterior: |
|
z = posterior.sample() |
|
else: |
|
z = posterior.mode() |
|
dec = self.decode(z).sample |
|
|
|
if not return_dict: |
|
return (dec,) |
|
|
|
return DecoderOutput(sample=dec) |
|
|