|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from dataclasses import dataclass |
|
from typing import Optional, Tuple, Union |
|
|
|
import numpy as np |
|
import torch |
|
|
|
from ..configuration_utils import ConfigMixin, register_to_config |
|
from ..utils import BaseOutput |
|
from .scheduling_utils import SchedulerMixin |
|
|
|
|
|
@dataclass |
|
class KarrasVeOutput(BaseOutput): |
|
""" |
|
Output class for the scheduler's step function output. |
|
|
|
Args: |
|
prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): |
|
Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the |
|
denoising loop. |
|
derivative (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): |
|
Derivate of predicted original image sample (x_0). |
|
""" |
|
|
|
prev_sample: torch.FloatTensor |
|
derivative: torch.FloatTensor |
|
|
|
|
|
class KarrasVeScheduler(SchedulerMixin, ConfigMixin): |
|
""" |
|
Stochastic sampling from Karras et al. [1] tailored to the Variance-Expanding (VE) models [2]. Use Algorithm 2 and |
|
the VE column of Table 1 from [1] for reference. |
|
|
|
[1] Karras, Tero, et al. "Elucidating the Design Space of Diffusion-Based Generative Models." |
|
https://arxiv.org/abs/2206.00364 [2] Song, Yang, et al. "Score-based generative modeling through stochastic |
|
differential equations." https://arxiv.org/abs/2011.13456 |
|
|
|
[`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__` |
|
function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`. |
|
[`~ConfigMixin`] also provides general loading and saving functionality via the [`~ConfigMixin.save_config`] and |
|
[`~ConfigMixin.from_config`] functios. |
|
|
|
For more details on the parameters, see the original paper's Appendix E.: "Elucidating the Design Space of |
|
Diffusion-Based Generative Models." https://arxiv.org/abs/2206.00364. The grid search values used to find the |
|
optimal {s_noise, s_churn, s_min, s_max} for a specific model are described in Table 5 of the paper. |
|
|
|
Args: |
|
sigma_min (`float`): minimum noise magnitude |
|
sigma_max (`float`): maximum noise magnitude |
|
s_noise (`float`): the amount of additional noise to counteract loss of detail during sampling. |
|
A reasonable range is [1.000, 1.011]. |
|
s_churn (`float`): the parameter controlling the overall amount of stochasticity. |
|
A reasonable range is [0, 100]. |
|
s_min (`float`): the start value of the sigma range where we add noise (enable stochasticity). |
|
A reasonable range is [0, 10]. |
|
s_max (`float`): the end value of the sigma range where we add noise. |
|
A reasonable range is [0.2, 80]. |
|
tensor_format (`str`): whether the scheduler expects pytorch or numpy arrays. |
|
|
|
""" |
|
|
|
@register_to_config |
|
def __init__( |
|
self, |
|
sigma_min: float = 0.02, |
|
sigma_max: float = 100, |
|
s_noise: float = 1.007, |
|
s_churn: float = 80, |
|
s_min: float = 0.05, |
|
s_max: float = 50, |
|
tensor_format: str = "pt", |
|
): |
|
|
|
self.num_inference_steps = None |
|
self.timesteps = None |
|
self.schedule = None |
|
|
|
self.tensor_format = tensor_format |
|
self.set_format(tensor_format=tensor_format) |
|
|
|
def set_timesteps(self, num_inference_steps: int): |
|
""" |
|
Sets the continuous timesteps used for the diffusion chain. Supporting function to be run before inference. |
|
|
|
Args: |
|
num_inference_steps (`int`): |
|
the number of diffusion steps used when generating samples with a pre-trained model. |
|
|
|
""" |
|
self.num_inference_steps = num_inference_steps |
|
self.timesteps = np.arange(0, self.num_inference_steps)[::-1].copy() |
|
self.schedule = [ |
|
(self.sigma_max * (self.sigma_min**2 / self.sigma_max**2) ** (i / (num_inference_steps - 1))) |
|
for i in self.timesteps |
|
] |
|
self.schedule = np.array(self.schedule, dtype=np.float32) |
|
|
|
self.set_format(tensor_format=self.tensor_format) |
|
|
|
def add_noise_to_input( |
|
self, sample: Union[torch.FloatTensor, np.ndarray], sigma: float, generator: Optional[torch.Generator] = None |
|
) -> Tuple[Union[torch.FloatTensor, np.ndarray], float]: |
|
""" |
|
Explicit Langevin-like "churn" step of adding noise to the sample according to a factor gamma_i ≥ 0 to reach a |
|
higher noise level sigma_hat = sigma_i + gamma_i*sigma_i. |
|
|
|
TODO Args: |
|
""" |
|
if self.s_min <= sigma <= self.s_max: |
|
gamma = min(self.s_churn / self.num_inference_steps, 2**0.5 - 1) |
|
else: |
|
gamma = 0 |
|
|
|
|
|
eps = self.s_noise * torch.randn(sample.shape, generator=generator).to(sample.device) |
|
sigma_hat = sigma + gamma * sigma |
|
sample_hat = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) |
|
|
|
return sample_hat, sigma_hat |
|
|
|
def step( |
|
self, |
|
model_output: Union[torch.FloatTensor, np.ndarray], |
|
sigma_hat: float, |
|
sigma_prev: float, |
|
sample_hat: Union[torch.FloatTensor, np.ndarray], |
|
return_dict: bool = True, |
|
) -> Union[KarrasVeOutput, Tuple]: |
|
""" |
|
Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion |
|
process from the learned model outputs (most often the predicted noise). |
|
|
|
Args: |
|
model_output (`torch.FloatTensor` or `np.ndarray`): direct output from learned diffusion model. |
|
sigma_hat (`float`): TODO |
|
sigma_prev (`float`): TODO |
|
sample_hat (`torch.FloatTensor` or `np.ndarray`): TODO |
|
return_dict (`bool`): option for returning tuple rather than SchedulerOutput class |
|
|
|
KarrasVeOutput: updated sample in the diffusion chain and derivative (TODO double check). |
|
Returns: |
|
[`~schedulers.scheduling_karras_ve.KarrasVeOutput`] or `tuple`: |
|
[`~schedulers.scheduling_karras_ve.KarrasVeOutput`] if `return_dict` is True, otherwise a `tuple`. When |
|
returning a tuple, the first element is the sample tensor. |
|
|
|
""" |
|
|
|
pred_original_sample = sample_hat + sigma_hat * model_output |
|
derivative = (sample_hat - pred_original_sample) / sigma_hat |
|
sample_prev = sample_hat + (sigma_prev - sigma_hat) * derivative |
|
|
|
if not return_dict: |
|
return (sample_prev, derivative) |
|
|
|
return KarrasVeOutput(prev_sample=sample_prev, derivative=derivative) |
|
|
|
def step_correct( |
|
self, |
|
model_output: Union[torch.FloatTensor, np.ndarray], |
|
sigma_hat: float, |
|
sigma_prev: float, |
|
sample_hat: Union[torch.FloatTensor, np.ndarray], |
|
sample_prev: Union[torch.FloatTensor, np.ndarray], |
|
derivative: Union[torch.FloatTensor, np.ndarray], |
|
return_dict: bool = True, |
|
) -> Union[KarrasVeOutput, Tuple]: |
|
""" |
|
Correct the predicted sample based on the output model_output of the network. TODO complete description |
|
|
|
Args: |
|
model_output (`torch.FloatTensor` or `np.ndarray`): direct output from learned diffusion model. |
|
sigma_hat (`float`): TODO |
|
sigma_prev (`float`): TODO |
|
sample_hat (`torch.FloatTensor` or `np.ndarray`): TODO |
|
sample_prev (`torch.FloatTensor` or `np.ndarray`): TODO |
|
derivative (`torch.FloatTensor` or `np.ndarray`): TODO |
|
return_dict (`bool`): option for returning tuple rather than SchedulerOutput class |
|
|
|
Returns: |
|
prev_sample (TODO): updated sample in the diffusion chain. derivative (TODO): TODO |
|
|
|
""" |
|
pred_original_sample = sample_prev + sigma_prev * model_output |
|
derivative_corr = (sample_prev - pred_original_sample) / sigma_prev |
|
sample_prev = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) |
|
|
|
if not return_dict: |
|
return (sample_prev, derivative) |
|
|
|
return KarrasVeOutput(prev_sample=sample_prev, derivative=derivative) |
|
|
|
def add_noise(self, original_samples, noise, timesteps): |
|
raise NotImplementedError() |
|
|