|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" ConfigMixinuration base class and utilities.""" |
|
import functools |
|
import inspect |
|
import json |
|
import os |
|
import re |
|
from collections import OrderedDict |
|
from typing import Any, Dict, Tuple, Union |
|
|
|
from huggingface_hub import hf_hub_download |
|
from huggingface_hub.utils import EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError |
|
from requests import HTTPError |
|
|
|
from . import __version__ |
|
from .utils import DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, logging |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
_re_configuration_file = re.compile(r"config\.(.*)\.json") |
|
|
|
|
|
class ConfigMixin: |
|
r""" |
|
Base class for all configuration classes. Stores all configuration parameters under `self.config` Also handles all |
|
methods for loading/downloading/saving classes inheriting from [`ConfigMixin`] with |
|
- [`~ConfigMixin.from_config`] |
|
- [`~ConfigMixin.save_config`] |
|
|
|
Class attributes: |
|
- **config_name** (`str`) -- A filename under which the config should stored when calling |
|
[`~ConfigMixin.save_config`] (should be overriden by parent class). |
|
- **ignore_for_config** (`List[str]`) -- A list of attributes that should not be saved in the config (should be |
|
overriden by parent class). |
|
""" |
|
config_name = None |
|
ignore_for_config = [] |
|
|
|
def register_to_config(self, **kwargs): |
|
if self.config_name is None: |
|
raise NotImplementedError(f"Make sure that {self.__class__} has defined a class name `config_name`") |
|
kwargs["_class_name"] = self.__class__.__name__ |
|
kwargs["_diffusers_version"] = __version__ |
|
|
|
for key, value in kwargs.items(): |
|
try: |
|
setattr(self, key, value) |
|
except AttributeError as err: |
|
logger.error(f"Can't set {key} with value {value} for {self}") |
|
raise err |
|
|
|
if not hasattr(self, "_internal_dict"): |
|
internal_dict = kwargs |
|
else: |
|
previous_dict = dict(self._internal_dict) |
|
internal_dict = {**self._internal_dict, **kwargs} |
|
logger.debug(f"Updating config from {previous_dict} to {internal_dict}") |
|
|
|
self._internal_dict = FrozenDict(internal_dict) |
|
|
|
def save_config(self, save_directory: Union[str, os.PathLike], push_to_hub: bool = False, **kwargs): |
|
""" |
|
Save a configuration object to the directory `save_directory`, so that it can be re-loaded using the |
|
[`~ConfigMixin.from_config`] class method. |
|
|
|
Args: |
|
save_directory (`str` or `os.PathLike`): |
|
Directory where the configuration JSON file will be saved (will be created if it does not exist). |
|
""" |
|
if os.path.isfile(save_directory): |
|
raise AssertionError(f"Provided path ({save_directory}) should be a directory, not a file") |
|
|
|
os.makedirs(save_directory, exist_ok=True) |
|
|
|
|
|
output_config_file = os.path.join(save_directory, self.config_name) |
|
|
|
self.to_json_file(output_config_file) |
|
logger.info(f"ConfigMixinuration saved in {output_config_file}") |
|
|
|
@classmethod |
|
def from_config(cls, pretrained_model_name_or_path: Union[str, os.PathLike], return_unused_kwargs=False, **kwargs): |
|
r""" |
|
Instantiate a Python class from a pre-defined JSON-file. |
|
|
|
Parameters: |
|
pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*): |
|
Can be either: |
|
|
|
- A string, the *model id* of a model repo on huggingface.co. Valid model ids should have an |
|
organization name, like `google/ddpm-celebahq-256`. |
|
- A path to a *directory* containing model weights saved using [`~ConfigMixin.save_config`], e.g., |
|
`./my_model_directory/`. |
|
|
|
cache_dir (`Union[str, os.PathLike]`, *optional*): |
|
Path to a directory in which a downloaded pretrained model configuration should be cached if the |
|
standard cache should not be used. |
|
ignore_mismatched_sizes (`bool`, *optional*, defaults to `False`): |
|
Whether or not to raise an error if some of the weights from the checkpoint do not have the same size |
|
as the weights of the model (if for instance, you are instantiating a model with 10 labels from a |
|
checkpoint with 3 labels). |
|
force_download (`bool`, *optional*, defaults to `False`): |
|
Whether or not to force the (re-)download of the model weights and configuration files, overriding the |
|
cached versions if they exist. |
|
resume_download (`bool`, *optional*, defaults to `False`): |
|
Whether or not to delete incompletely received files. Will attempt to resume the download if such a |
|
file exists. |
|
proxies (`Dict[str, str]`, *optional*): |
|
A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128', |
|
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. |
|
output_loading_info(`bool`, *optional*, defaults to `False`): |
|
Whether ot not to also return a dictionary containing missing keys, unexpected keys and error messages. |
|
local_files_only(`bool`, *optional*, defaults to `False`): |
|
Whether or not to only look at local files (i.e., do not try to download the model). |
|
use_auth_token (`str` or *bool*, *optional*): |
|
The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated |
|
when running `transformers-cli login` (stored in `~/.huggingface`). |
|
revision (`str`, *optional*, defaults to `"main"`): |
|
The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a |
|
git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any |
|
identifier allowed by git. |
|
mirror (`str`, *optional*): |
|
Mirror source to accelerate downloads in China. If you are from China and have an accessibility |
|
problem, you can set this option to resolve it. Note that we do not guarantee the timeliness or safety. |
|
Please refer to the mirror site for more information. |
|
|
|
<Tip> |
|
|
|
Passing `use_auth_token=True`` is required when you want to use a private model. |
|
|
|
</Tip> |
|
|
|
<Tip> |
|
|
|
Activate the special ["offline-mode"](https://huggingface.co/transformers/installation.html#offline-mode) to |
|
use this method in a firewalled environment. |
|
|
|
</Tip> |
|
|
|
""" |
|
config_dict = cls.get_config_dict(pretrained_model_name_or_path=pretrained_model_name_or_path, **kwargs) |
|
|
|
init_dict, unused_kwargs = cls.extract_init_dict(config_dict, **kwargs) |
|
|
|
model = cls(**init_dict) |
|
|
|
if return_unused_kwargs: |
|
return model, unused_kwargs |
|
else: |
|
return model |
|
|
|
@classmethod |
|
def get_config_dict( |
|
cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs |
|
) -> Tuple[Dict[str, Any], Dict[str, Any]]: |
|
cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE) |
|
force_download = kwargs.pop("force_download", False) |
|
resume_download = kwargs.pop("resume_download", False) |
|
proxies = kwargs.pop("proxies", None) |
|
use_auth_token = kwargs.pop("use_auth_token", None) |
|
local_files_only = kwargs.pop("local_files_only", False) |
|
revision = kwargs.pop("revision", None) |
|
subfolder = kwargs.pop("subfolder", None) |
|
|
|
user_agent = {"file_type": "config"} |
|
|
|
pretrained_model_name_or_path = str(pretrained_model_name_or_path) |
|
|
|
if cls.config_name is None: |
|
raise ValueError( |
|
"`self.config_name` is not defined. Note that one should not load a config from " |
|
"`ConfigMixin`. Please make sure to define `config_name` in a class inheriting from `ConfigMixin`" |
|
) |
|
|
|
if os.path.isfile(pretrained_model_name_or_path): |
|
config_file = pretrained_model_name_or_path |
|
elif os.path.isdir(pretrained_model_name_or_path): |
|
if os.path.isfile(os.path.join(pretrained_model_name_or_path, cls.config_name)): |
|
|
|
config_file = os.path.join(pretrained_model_name_or_path, cls.config_name) |
|
elif subfolder is not None and os.path.isfile( |
|
os.path.join(pretrained_model_name_or_path, subfolder, cls.config_name) |
|
): |
|
config_file = os.path.join(pretrained_model_name_or_path, subfolder, cls.config_name) |
|
else: |
|
raise EnvironmentError( |
|
f"Error no file named {cls.config_name} found in directory {pretrained_model_name_or_path}." |
|
) |
|
else: |
|
try: |
|
|
|
config_file = hf_hub_download( |
|
pretrained_model_name_or_path, |
|
filename=cls.config_name, |
|
cache_dir=cache_dir, |
|
force_download=force_download, |
|
proxies=proxies, |
|
resume_download=resume_download, |
|
local_files_only=local_files_only, |
|
use_auth_token=use_auth_token, |
|
user_agent=user_agent, |
|
subfolder=subfolder, |
|
revision=revision, |
|
) |
|
|
|
except RepositoryNotFoundError: |
|
raise EnvironmentError( |
|
f"{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier" |
|
" listed on 'https://huggingface.co/models'\nIf this is a private repository, make sure to pass a" |
|
" token having permission to this repo with `use_auth_token` or log in with `huggingface-cli" |
|
" login` and pass `use_auth_token=True`." |
|
) |
|
except RevisionNotFoundError: |
|
raise EnvironmentError( |
|
f"{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for" |
|
" this model name. Check the model page at" |
|
f" 'https://huggingface.co/{pretrained_model_name_or_path}' for available revisions." |
|
) |
|
except EntryNotFoundError: |
|
raise EnvironmentError( |
|
f"{pretrained_model_name_or_path} does not appear to have a file named {cls.config_name}." |
|
) |
|
except HTTPError as err: |
|
raise EnvironmentError( |
|
"There was a specific connection error when trying to load" |
|
f" {pretrained_model_name_or_path}:\n{err}" |
|
) |
|
except ValueError: |
|
raise EnvironmentError( |
|
f"We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load this model, couldn't find it" |
|
f" in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a" |
|
f" directory containing a {cls.config_name} file.\nCheckout your internet connection or see how to" |
|
" run the library in offline mode at" |
|
" 'https://huggingface.co/docs/diffusers/installation#offline-mode'." |
|
) |
|
except EnvironmentError: |
|
raise EnvironmentError( |
|
f"Can't load config for '{pretrained_model_name_or_path}'. If you were trying to load it from " |
|
"'https://huggingface.co/models', make sure you don't have a local directory with the same name. " |
|
f"Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a directory " |
|
f"containing a {cls.config_name} file" |
|
) |
|
|
|
try: |
|
|
|
config_dict = cls._dict_from_json_file(config_file) |
|
except (json.JSONDecodeError, UnicodeDecodeError): |
|
raise EnvironmentError(f"It looks like the config file at '{config_file}' is not a valid JSON file.") |
|
|
|
return config_dict |
|
|
|
@classmethod |
|
def extract_init_dict(cls, config_dict, **kwargs): |
|
expected_keys = set(dict(inspect.signature(cls.__init__).parameters).keys()) |
|
expected_keys.remove("self") |
|
|
|
if "kwargs" in expected_keys: |
|
expected_keys.remove("kwargs") |
|
|
|
if len(cls.ignore_for_config) > 0: |
|
expected_keys = expected_keys - set(cls.ignore_for_config) |
|
init_dict = {} |
|
for key in expected_keys: |
|
if key in kwargs: |
|
|
|
init_dict[key] = kwargs.pop(key) |
|
elif key in config_dict: |
|
|
|
init_dict[key] = config_dict.pop(key) |
|
|
|
unused_kwargs = config_dict.update(kwargs) |
|
|
|
passed_keys = set(init_dict.keys()) |
|
if len(expected_keys - passed_keys) > 0: |
|
logger.warning( |
|
f"{expected_keys - passed_keys} was not found in config. Values will be initialized to default values." |
|
) |
|
|
|
return init_dict, unused_kwargs |
|
|
|
@classmethod |
|
def _dict_from_json_file(cls, json_file: Union[str, os.PathLike]): |
|
with open(json_file, "r", encoding="utf-8") as reader: |
|
text = reader.read() |
|
return json.loads(text) |
|
|
|
def __repr__(self): |
|
return f"{self.__class__.__name__} {self.to_json_string()}" |
|
|
|
@property |
|
def config(self) -> Dict[str, Any]: |
|
return self._internal_dict |
|
|
|
def to_json_string(self) -> str: |
|
""" |
|
Serializes this instance to a JSON string. |
|
|
|
Returns: |
|
`str`: String containing all the attributes that make up this configuration instance in JSON format. |
|
""" |
|
config_dict = self._internal_dict if hasattr(self, "_internal_dict") else {} |
|
return json.dumps(config_dict, indent=2, sort_keys=True) + "\n" |
|
|
|
def to_json_file(self, json_file_path: Union[str, os.PathLike]): |
|
""" |
|
Save this instance to a JSON file. |
|
|
|
Args: |
|
json_file_path (`str` or `os.PathLike`): |
|
Path to the JSON file in which this configuration instance's parameters will be saved. |
|
""" |
|
with open(json_file_path, "w", encoding="utf-8") as writer: |
|
writer.write(self.to_json_string()) |
|
|
|
|
|
class FrozenDict(OrderedDict): |
|
def __init__(self, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
|
|
for key, value in self.items(): |
|
setattr(self, key, value) |
|
|
|
self.__frozen = True |
|
|
|
def __delitem__(self, *args, **kwargs): |
|
raise Exception(f"You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.") |
|
|
|
def setdefault(self, *args, **kwargs): |
|
raise Exception(f"You cannot use ``setdefault`` on a {self.__class__.__name__} instance.") |
|
|
|
def pop(self, *args, **kwargs): |
|
raise Exception(f"You cannot use ``pop`` on a {self.__class__.__name__} instance.") |
|
|
|
def update(self, *args, **kwargs): |
|
raise Exception(f"You cannot use ``update`` on a {self.__class__.__name__} instance.") |
|
|
|
def __setattr__(self, name, value): |
|
if hasattr(self, "__frozen") and self.__frozen: |
|
raise Exception(f"You cannot use ``__setattr__`` on a {self.__class__.__name__} instance.") |
|
super().__setattr__(name, value) |
|
|
|
def __setitem__(self, name, value): |
|
if hasattr(self, "__frozen") and self.__frozen: |
|
raise Exception(f"You cannot use ``__setattr__`` on a {self.__class__.__name__} instance.") |
|
super().__setitem__(name, value) |
|
|
|
|
|
def register_to_config(init): |
|
r""" |
|
Decorator to apply on the init of classes inheriting from [`ConfigMixin`] so that all the arguments are |
|
automatically sent to `self.register_for_config`. To ignore a specific argument accepted by the init but that |
|
shouldn't be registered in the config, use the `ignore_for_config` class variable |
|
|
|
Warning: Once decorated, all private arguments (beginning with an underscore) are trashed and not sent to the init! |
|
""" |
|
|
|
@functools.wraps(init) |
|
def inner_init(self, *args, **kwargs): |
|
|
|
init_kwargs = {k: v for k, v in kwargs.items() if not k.startswith("_")} |
|
init(self, *args, **init_kwargs) |
|
if not isinstance(self, ConfigMixin): |
|
raise RuntimeError( |
|
f"`@register_for_config` was applied to {self.__class__.__name__} init method, but this class does " |
|
"not inherit from `ConfigMixin`." |
|
) |
|
|
|
ignore = getattr(self, "ignore_for_config", []) |
|
|
|
new_kwargs = {} |
|
signature = inspect.signature(init) |
|
parameters = { |
|
name: p.default for i, (name, p) in enumerate(signature.parameters.items()) if i > 0 and name not in ignore |
|
} |
|
for arg, name in zip(args, parameters.keys()): |
|
new_kwargs[name] = arg |
|
|
|
|
|
new_kwargs.update( |
|
{ |
|
k: init_kwargs.get(k, default) |
|
for k, default in parameters.items() |
|
if k not in ignore and k not in new_kwargs |
|
} |
|
) |
|
getattr(self, "register_to_config")(**new_kwargs) |
|
|
|
return inner_init |
|
|