|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import numpy as np |
|
|
|
|
|
import torch |
|
from torch import nn |
|
|
|
from .attention import AttentionBlock, SpatialTransformer |
|
from .resnet import Downsample2D, FirDownsample2D, FirUpsample2D, ResnetBlock2D, Upsample2D |
|
|
|
|
|
def get_down_block( |
|
down_block_type, |
|
num_layers, |
|
in_channels, |
|
out_channels, |
|
temb_channels, |
|
add_downsample, |
|
resnet_eps, |
|
resnet_act_fn, |
|
attn_num_head_channels, |
|
cross_attention_dim=None, |
|
downsample_padding=None, |
|
): |
|
down_block_type = down_block_type[7:] if down_block_type.startswith("UNetRes") else down_block_type |
|
if down_block_type == "DownBlock2D": |
|
return DownBlock2D( |
|
num_layers=num_layers, |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
temb_channels=temb_channels, |
|
add_downsample=add_downsample, |
|
resnet_eps=resnet_eps, |
|
resnet_act_fn=resnet_act_fn, |
|
downsample_padding=downsample_padding, |
|
) |
|
elif down_block_type == "AttnDownBlock2D": |
|
return AttnDownBlock2D( |
|
num_layers=num_layers, |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
temb_channels=temb_channels, |
|
add_downsample=add_downsample, |
|
resnet_eps=resnet_eps, |
|
resnet_act_fn=resnet_act_fn, |
|
downsample_padding=downsample_padding, |
|
attn_num_head_channels=attn_num_head_channels, |
|
) |
|
elif down_block_type == "CrossAttnDownBlock2D": |
|
if cross_attention_dim is None: |
|
raise ValueError("cross_attention_dim must be specified for CrossAttnDownBlock2D") |
|
return CrossAttnDownBlock2D( |
|
num_layers=num_layers, |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
temb_channels=temb_channels, |
|
add_downsample=add_downsample, |
|
resnet_eps=resnet_eps, |
|
resnet_act_fn=resnet_act_fn, |
|
downsample_padding=downsample_padding, |
|
cross_attention_dim=cross_attention_dim, |
|
attn_num_head_channels=attn_num_head_channels, |
|
) |
|
elif down_block_type == "SkipDownBlock2D": |
|
return SkipDownBlock2D( |
|
num_layers=num_layers, |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
temb_channels=temb_channels, |
|
add_downsample=add_downsample, |
|
resnet_eps=resnet_eps, |
|
resnet_act_fn=resnet_act_fn, |
|
downsample_padding=downsample_padding, |
|
) |
|
elif down_block_type == "AttnSkipDownBlock2D": |
|
return AttnSkipDownBlock2D( |
|
num_layers=num_layers, |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
temb_channels=temb_channels, |
|
add_downsample=add_downsample, |
|
resnet_eps=resnet_eps, |
|
resnet_act_fn=resnet_act_fn, |
|
downsample_padding=downsample_padding, |
|
attn_num_head_channels=attn_num_head_channels, |
|
) |
|
elif down_block_type == "DownEncoderBlock2D": |
|
return DownEncoderBlock2D( |
|
num_layers=num_layers, |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
add_downsample=add_downsample, |
|
resnet_eps=resnet_eps, |
|
resnet_act_fn=resnet_act_fn, |
|
downsample_padding=downsample_padding, |
|
) |
|
|
|
|
|
def get_up_block( |
|
up_block_type, |
|
num_layers, |
|
in_channels, |
|
out_channels, |
|
prev_output_channel, |
|
temb_channels, |
|
add_upsample, |
|
resnet_eps, |
|
resnet_act_fn, |
|
attn_num_head_channels, |
|
cross_attention_dim=None, |
|
): |
|
up_block_type = up_block_type[7:] if up_block_type.startswith("UNetRes") else up_block_type |
|
if up_block_type == "UpBlock2D": |
|
return UpBlock2D( |
|
num_layers=num_layers, |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
prev_output_channel=prev_output_channel, |
|
temb_channels=temb_channels, |
|
add_upsample=add_upsample, |
|
resnet_eps=resnet_eps, |
|
resnet_act_fn=resnet_act_fn, |
|
) |
|
elif up_block_type == "CrossAttnUpBlock2D": |
|
if cross_attention_dim is None: |
|
raise ValueError("cross_attention_dim must be specified for CrossAttnUpBlock2D") |
|
return CrossAttnUpBlock2D( |
|
num_layers=num_layers, |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
prev_output_channel=prev_output_channel, |
|
temb_channels=temb_channels, |
|
add_upsample=add_upsample, |
|
resnet_eps=resnet_eps, |
|
resnet_act_fn=resnet_act_fn, |
|
cross_attention_dim=cross_attention_dim, |
|
attn_num_head_channels=attn_num_head_channels, |
|
) |
|
elif up_block_type == "AttnUpBlock2D": |
|
return AttnUpBlock2D( |
|
num_layers=num_layers, |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
prev_output_channel=prev_output_channel, |
|
temb_channels=temb_channels, |
|
add_upsample=add_upsample, |
|
resnet_eps=resnet_eps, |
|
resnet_act_fn=resnet_act_fn, |
|
attn_num_head_channels=attn_num_head_channels, |
|
) |
|
elif up_block_type == "SkipUpBlock2D": |
|
return SkipUpBlock2D( |
|
num_layers=num_layers, |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
prev_output_channel=prev_output_channel, |
|
temb_channels=temb_channels, |
|
add_upsample=add_upsample, |
|
resnet_eps=resnet_eps, |
|
resnet_act_fn=resnet_act_fn, |
|
) |
|
elif up_block_type == "AttnSkipUpBlock2D": |
|
return AttnSkipUpBlock2D( |
|
num_layers=num_layers, |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
prev_output_channel=prev_output_channel, |
|
temb_channels=temb_channels, |
|
add_upsample=add_upsample, |
|
resnet_eps=resnet_eps, |
|
resnet_act_fn=resnet_act_fn, |
|
attn_num_head_channels=attn_num_head_channels, |
|
) |
|
elif up_block_type == "UpDecoderBlock2D": |
|
return UpDecoderBlock2D( |
|
num_layers=num_layers, |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
add_upsample=add_upsample, |
|
resnet_eps=resnet_eps, |
|
resnet_act_fn=resnet_act_fn, |
|
) |
|
raise ValueError(f"{up_block_type} does not exist.") |
|
|
|
|
|
class UNetMidBlock2D(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels: int, |
|
temb_channels: int, |
|
dropout: float = 0.0, |
|
num_layers: int = 1, |
|
resnet_eps: float = 1e-6, |
|
resnet_time_scale_shift: str = "default", |
|
resnet_act_fn: str = "swish", |
|
resnet_groups: int = 32, |
|
resnet_pre_norm: bool = True, |
|
attn_num_head_channels=1, |
|
attention_type="default", |
|
output_scale_factor=1.0, |
|
**kwargs, |
|
): |
|
super().__init__() |
|
|
|
self.attention_type = attention_type |
|
resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32) |
|
|
|
|
|
resnets = [ |
|
ResnetBlock2D( |
|
in_channels=in_channels, |
|
out_channels=in_channels, |
|
temb_channels=temb_channels, |
|
eps=resnet_eps, |
|
groups=resnet_groups, |
|
dropout=dropout, |
|
time_embedding_norm=resnet_time_scale_shift, |
|
non_linearity=resnet_act_fn, |
|
output_scale_factor=output_scale_factor, |
|
pre_norm=resnet_pre_norm, |
|
) |
|
] |
|
attentions = [] |
|
|
|
for _ in range(num_layers): |
|
attentions.append( |
|
AttentionBlock( |
|
in_channels, |
|
num_head_channels=attn_num_head_channels, |
|
rescale_output_factor=output_scale_factor, |
|
eps=resnet_eps, |
|
num_groups=resnet_groups, |
|
) |
|
) |
|
resnets.append( |
|
ResnetBlock2D( |
|
in_channels=in_channels, |
|
out_channels=in_channels, |
|
temb_channels=temb_channels, |
|
eps=resnet_eps, |
|
groups=resnet_groups, |
|
dropout=dropout, |
|
time_embedding_norm=resnet_time_scale_shift, |
|
non_linearity=resnet_act_fn, |
|
output_scale_factor=output_scale_factor, |
|
pre_norm=resnet_pre_norm, |
|
) |
|
) |
|
|
|
self.attentions = nn.ModuleList(attentions) |
|
self.resnets = nn.ModuleList(resnets) |
|
|
|
def forward(self, hidden_states, temb=None, encoder_states=None): |
|
hidden_states = self.resnets[0](hidden_states, temb) |
|
for attn, resnet in zip(self.attentions, self.resnets[1:]): |
|
if self.attention_type == "default": |
|
hidden_states = attn(hidden_states) |
|
else: |
|
hidden_states = attn(hidden_states, encoder_states) |
|
hidden_states = resnet(hidden_states, temb) |
|
|
|
return hidden_states |
|
|
|
|
|
class UNetMidBlock2DCrossAttn(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels: int, |
|
temb_channels: int, |
|
dropout: float = 0.0, |
|
num_layers: int = 1, |
|
resnet_eps: float = 1e-6, |
|
resnet_time_scale_shift: str = "default", |
|
resnet_act_fn: str = "swish", |
|
resnet_groups: int = 32, |
|
resnet_pre_norm: bool = True, |
|
attn_num_head_channels=1, |
|
attention_type="default", |
|
output_scale_factor=1.0, |
|
cross_attention_dim=1280, |
|
**kwargs, |
|
): |
|
super().__init__() |
|
|
|
self.attention_type = attention_type |
|
self.attn_num_head_channels = attn_num_head_channels |
|
resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32) |
|
|
|
|
|
resnets = [ |
|
ResnetBlock2D( |
|
in_channels=in_channels, |
|
out_channels=in_channels, |
|
temb_channels=temb_channels, |
|
eps=resnet_eps, |
|
groups=resnet_groups, |
|
dropout=dropout, |
|
time_embedding_norm=resnet_time_scale_shift, |
|
non_linearity=resnet_act_fn, |
|
output_scale_factor=output_scale_factor, |
|
pre_norm=resnet_pre_norm, |
|
) |
|
] |
|
attentions = [] |
|
|
|
for _ in range(num_layers): |
|
attentions.append( |
|
SpatialTransformer( |
|
in_channels, |
|
attn_num_head_channels, |
|
in_channels // attn_num_head_channels, |
|
depth=1, |
|
context_dim=cross_attention_dim, |
|
) |
|
) |
|
resnets.append( |
|
ResnetBlock2D( |
|
in_channels=in_channels, |
|
out_channels=in_channels, |
|
temb_channels=temb_channels, |
|
eps=resnet_eps, |
|
groups=resnet_groups, |
|
dropout=dropout, |
|
time_embedding_norm=resnet_time_scale_shift, |
|
non_linearity=resnet_act_fn, |
|
output_scale_factor=output_scale_factor, |
|
pre_norm=resnet_pre_norm, |
|
) |
|
) |
|
|
|
self.attentions = nn.ModuleList(attentions) |
|
self.resnets = nn.ModuleList(resnets) |
|
|
|
def set_attention_slice(self, slice_size): |
|
if slice_size is not None and self.attn_num_head_channels % slice_size != 0: |
|
raise ValueError( |
|
f"Make sure slice_size {slice_size} is a divisor of " |
|
f"the number of heads used in cross_attention {self.attn_num_head_channels}" |
|
) |
|
if slice_size is not None and slice_size > self.attn_num_head_channels: |
|
raise ValueError( |
|
f"Chunk_size {slice_size} has to be smaller or equal to " |
|
f"the number of heads used in cross_attention {self.attn_num_head_channels}" |
|
) |
|
|
|
for attn in self.attentions: |
|
attn._set_attention_slice(slice_size) |
|
|
|
def forward(self, hidden_states, temb=None, encoder_hidden_states=None): |
|
hidden_states = self.resnets[0](hidden_states, temb) |
|
for attn, resnet in zip(self.attentions, self.resnets[1:]): |
|
hidden_states = attn(hidden_states, encoder_hidden_states) |
|
hidden_states = resnet(hidden_states, temb) |
|
|
|
return hidden_states |
|
|
|
|
|
class AttnDownBlock2D(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels: int, |
|
out_channels: int, |
|
temb_channels: int, |
|
dropout: float = 0.0, |
|
num_layers: int = 1, |
|
resnet_eps: float = 1e-6, |
|
resnet_time_scale_shift: str = "default", |
|
resnet_act_fn: str = "swish", |
|
resnet_groups: int = 32, |
|
resnet_pre_norm: bool = True, |
|
attn_num_head_channels=1, |
|
attention_type="default", |
|
output_scale_factor=1.0, |
|
downsample_padding=1, |
|
add_downsample=True, |
|
): |
|
super().__init__() |
|
resnets = [] |
|
attentions = [] |
|
|
|
self.attention_type = attention_type |
|
|
|
for i in range(num_layers): |
|
in_channels = in_channels if i == 0 else out_channels |
|
resnets.append( |
|
ResnetBlock2D( |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
temb_channels=temb_channels, |
|
eps=resnet_eps, |
|
groups=resnet_groups, |
|
dropout=dropout, |
|
time_embedding_norm=resnet_time_scale_shift, |
|
non_linearity=resnet_act_fn, |
|
output_scale_factor=output_scale_factor, |
|
pre_norm=resnet_pre_norm, |
|
) |
|
) |
|
attentions.append( |
|
AttentionBlock( |
|
out_channels, |
|
num_head_channels=attn_num_head_channels, |
|
rescale_output_factor=output_scale_factor, |
|
eps=resnet_eps, |
|
) |
|
) |
|
|
|
self.attentions = nn.ModuleList(attentions) |
|
self.resnets = nn.ModuleList(resnets) |
|
|
|
if add_downsample: |
|
self.downsamplers = nn.ModuleList( |
|
[ |
|
Downsample2D( |
|
in_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op" |
|
) |
|
] |
|
) |
|
else: |
|
self.downsamplers = None |
|
|
|
def forward(self, hidden_states, temb=None): |
|
output_states = () |
|
|
|
for resnet, attn in zip(self.resnets, self.attentions): |
|
hidden_states = resnet(hidden_states, temb) |
|
hidden_states = attn(hidden_states) |
|
output_states += (hidden_states,) |
|
|
|
if self.downsamplers is not None: |
|
for downsampler in self.downsamplers: |
|
hidden_states = downsampler(hidden_states) |
|
|
|
output_states += (hidden_states,) |
|
|
|
return hidden_states, output_states |
|
|
|
|
|
class CrossAttnDownBlock2D(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels: int, |
|
out_channels: int, |
|
temb_channels: int, |
|
dropout: float = 0.0, |
|
num_layers: int = 1, |
|
resnet_eps: float = 1e-6, |
|
resnet_time_scale_shift: str = "default", |
|
resnet_act_fn: str = "swish", |
|
resnet_groups: int = 32, |
|
resnet_pre_norm: bool = True, |
|
attn_num_head_channels=1, |
|
cross_attention_dim=1280, |
|
attention_type="default", |
|
output_scale_factor=1.0, |
|
downsample_padding=1, |
|
add_downsample=True, |
|
): |
|
super().__init__() |
|
resnets = [] |
|
attentions = [] |
|
|
|
self.attention_type = attention_type |
|
self.attn_num_head_channels = attn_num_head_channels |
|
|
|
for i in range(num_layers): |
|
in_channels = in_channels if i == 0 else out_channels |
|
resnets.append( |
|
ResnetBlock2D( |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
temb_channels=temb_channels, |
|
eps=resnet_eps, |
|
groups=resnet_groups, |
|
dropout=dropout, |
|
time_embedding_norm=resnet_time_scale_shift, |
|
non_linearity=resnet_act_fn, |
|
output_scale_factor=output_scale_factor, |
|
pre_norm=resnet_pre_norm, |
|
) |
|
) |
|
attentions.append( |
|
SpatialTransformer( |
|
out_channels, |
|
attn_num_head_channels, |
|
out_channels // attn_num_head_channels, |
|
depth=1, |
|
context_dim=cross_attention_dim, |
|
) |
|
) |
|
self.attentions = nn.ModuleList(attentions) |
|
self.resnets = nn.ModuleList(resnets) |
|
|
|
if add_downsample: |
|
self.downsamplers = nn.ModuleList( |
|
[ |
|
Downsample2D( |
|
in_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op" |
|
) |
|
] |
|
) |
|
else: |
|
self.downsamplers = None |
|
|
|
def set_attention_slice(self, slice_size): |
|
if slice_size is not None and self.attn_num_head_channels % slice_size != 0: |
|
raise ValueError( |
|
f"Make sure slice_size {slice_size} is a divisor of " |
|
f"the number of heads used in cross_attention {self.attn_num_head_channels}" |
|
) |
|
if slice_size is not None and slice_size > self.attn_num_head_channels: |
|
raise ValueError( |
|
f"Chunk_size {slice_size} has to be smaller or equal to " |
|
f"the number of heads used in cross_attention {self.attn_num_head_channels}" |
|
) |
|
|
|
for attn in self.attentions: |
|
attn._set_attention_slice(slice_size) |
|
|
|
def forward(self, hidden_states, temb=None, encoder_hidden_states=None): |
|
output_states = () |
|
|
|
for resnet, attn in zip(self.resnets, self.attentions): |
|
hidden_states = resnet(hidden_states, temb) |
|
hidden_states = attn(hidden_states, context=encoder_hidden_states) |
|
output_states += (hidden_states,) |
|
|
|
if self.downsamplers is not None: |
|
for downsampler in self.downsamplers: |
|
hidden_states = downsampler(hidden_states) |
|
|
|
output_states += (hidden_states,) |
|
|
|
return hidden_states, output_states |
|
|
|
|
|
class DownBlock2D(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels: int, |
|
out_channels: int, |
|
temb_channels: int, |
|
dropout: float = 0.0, |
|
num_layers: int = 1, |
|
resnet_eps: float = 1e-6, |
|
resnet_time_scale_shift: str = "default", |
|
resnet_act_fn: str = "swish", |
|
resnet_groups: int = 32, |
|
resnet_pre_norm: bool = True, |
|
output_scale_factor=1.0, |
|
add_downsample=True, |
|
downsample_padding=1, |
|
): |
|
super().__init__() |
|
resnets = [] |
|
|
|
for i in range(num_layers): |
|
in_channels = in_channels if i == 0 else out_channels |
|
resnets.append( |
|
ResnetBlock2D( |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
temb_channels=temb_channels, |
|
eps=resnet_eps, |
|
groups=resnet_groups, |
|
dropout=dropout, |
|
time_embedding_norm=resnet_time_scale_shift, |
|
non_linearity=resnet_act_fn, |
|
output_scale_factor=output_scale_factor, |
|
pre_norm=resnet_pre_norm, |
|
) |
|
) |
|
|
|
self.resnets = nn.ModuleList(resnets) |
|
|
|
if add_downsample: |
|
self.downsamplers = nn.ModuleList( |
|
[ |
|
Downsample2D( |
|
in_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op" |
|
) |
|
] |
|
) |
|
else: |
|
self.downsamplers = None |
|
|
|
def forward(self, hidden_states, temb=None): |
|
output_states = () |
|
|
|
for resnet in self.resnets: |
|
hidden_states = resnet(hidden_states, temb) |
|
output_states += (hidden_states,) |
|
|
|
if self.downsamplers is not None: |
|
for downsampler in self.downsamplers: |
|
hidden_states = downsampler(hidden_states) |
|
|
|
output_states += (hidden_states,) |
|
|
|
return hidden_states, output_states |
|
|
|
|
|
class DownEncoderBlock2D(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels: int, |
|
out_channels: int, |
|
dropout: float = 0.0, |
|
num_layers: int = 1, |
|
resnet_eps: float = 1e-6, |
|
resnet_time_scale_shift: str = "default", |
|
resnet_act_fn: str = "swish", |
|
resnet_groups: int = 32, |
|
resnet_pre_norm: bool = True, |
|
output_scale_factor=1.0, |
|
add_downsample=True, |
|
downsample_padding=1, |
|
): |
|
super().__init__() |
|
resnets = [] |
|
|
|
for i in range(num_layers): |
|
in_channels = in_channels if i == 0 else out_channels |
|
resnets.append( |
|
ResnetBlock2D( |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
temb_channels=None, |
|
eps=resnet_eps, |
|
groups=resnet_groups, |
|
dropout=dropout, |
|
time_embedding_norm=resnet_time_scale_shift, |
|
non_linearity=resnet_act_fn, |
|
output_scale_factor=output_scale_factor, |
|
pre_norm=resnet_pre_norm, |
|
) |
|
) |
|
|
|
self.resnets = nn.ModuleList(resnets) |
|
|
|
if add_downsample: |
|
self.downsamplers = nn.ModuleList( |
|
[ |
|
Downsample2D( |
|
in_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op" |
|
) |
|
] |
|
) |
|
else: |
|
self.downsamplers = None |
|
|
|
def forward(self, hidden_states): |
|
for resnet in self.resnets: |
|
hidden_states = resnet(hidden_states, temb=None) |
|
|
|
if self.downsamplers is not None: |
|
for downsampler in self.downsamplers: |
|
hidden_states = downsampler(hidden_states) |
|
|
|
return hidden_states |
|
|
|
|
|
class AttnDownEncoderBlock2D(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels: int, |
|
out_channels: int, |
|
dropout: float = 0.0, |
|
num_layers: int = 1, |
|
resnet_eps: float = 1e-6, |
|
resnet_time_scale_shift: str = "default", |
|
resnet_act_fn: str = "swish", |
|
resnet_groups: int = 32, |
|
resnet_pre_norm: bool = True, |
|
attn_num_head_channels=1, |
|
output_scale_factor=1.0, |
|
add_downsample=True, |
|
downsample_padding=1, |
|
): |
|
super().__init__() |
|
resnets = [] |
|
attentions = [] |
|
|
|
for i in range(num_layers): |
|
in_channels = in_channels if i == 0 else out_channels |
|
resnets.append( |
|
ResnetBlock2D( |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
temb_channels=None, |
|
eps=resnet_eps, |
|
groups=resnet_groups, |
|
dropout=dropout, |
|
time_embedding_norm=resnet_time_scale_shift, |
|
non_linearity=resnet_act_fn, |
|
output_scale_factor=output_scale_factor, |
|
pre_norm=resnet_pre_norm, |
|
) |
|
) |
|
attentions.append( |
|
AttentionBlock( |
|
out_channels, |
|
num_head_channels=attn_num_head_channels, |
|
rescale_output_factor=output_scale_factor, |
|
eps=resnet_eps, |
|
num_groups=resnet_groups, |
|
) |
|
) |
|
|
|
self.attentions = nn.ModuleList(attentions) |
|
self.resnets = nn.ModuleList(resnets) |
|
|
|
if add_downsample: |
|
self.downsamplers = nn.ModuleList( |
|
[ |
|
Downsample2D( |
|
in_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op" |
|
) |
|
] |
|
) |
|
else: |
|
self.downsamplers = None |
|
|
|
def forward(self, hidden_states): |
|
for resnet, attn in zip(self.resnets, self.attentions): |
|
hidden_states = resnet(hidden_states, temb=None) |
|
hidden_states = attn(hidden_states) |
|
|
|
if self.downsamplers is not None: |
|
for downsampler in self.downsamplers: |
|
hidden_states = downsampler(hidden_states) |
|
|
|
return hidden_states |
|
|
|
|
|
class AttnSkipDownBlock2D(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels: int, |
|
out_channels: int, |
|
temb_channels: int, |
|
dropout: float = 0.0, |
|
num_layers: int = 1, |
|
resnet_eps: float = 1e-6, |
|
resnet_time_scale_shift: str = "default", |
|
resnet_act_fn: str = "swish", |
|
resnet_pre_norm: bool = True, |
|
attn_num_head_channels=1, |
|
attention_type="default", |
|
output_scale_factor=np.sqrt(2.0), |
|
downsample_padding=1, |
|
add_downsample=True, |
|
): |
|
super().__init__() |
|
self.attentions = nn.ModuleList([]) |
|
self.resnets = nn.ModuleList([]) |
|
|
|
self.attention_type = attention_type |
|
|
|
for i in range(num_layers): |
|
in_channels = in_channels if i == 0 else out_channels |
|
self.resnets.append( |
|
ResnetBlock2D( |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
temb_channels=temb_channels, |
|
eps=resnet_eps, |
|
groups=min(in_channels // 4, 32), |
|
groups_out=min(out_channels // 4, 32), |
|
dropout=dropout, |
|
time_embedding_norm=resnet_time_scale_shift, |
|
non_linearity=resnet_act_fn, |
|
output_scale_factor=output_scale_factor, |
|
pre_norm=resnet_pre_norm, |
|
) |
|
) |
|
self.attentions.append( |
|
AttentionBlock( |
|
out_channels, |
|
num_head_channels=attn_num_head_channels, |
|
rescale_output_factor=output_scale_factor, |
|
eps=resnet_eps, |
|
) |
|
) |
|
|
|
if add_downsample: |
|
self.resnet_down = ResnetBlock2D( |
|
in_channels=out_channels, |
|
out_channels=out_channels, |
|
temb_channels=temb_channels, |
|
eps=resnet_eps, |
|
groups=min(out_channels // 4, 32), |
|
dropout=dropout, |
|
time_embedding_norm=resnet_time_scale_shift, |
|
non_linearity=resnet_act_fn, |
|
output_scale_factor=output_scale_factor, |
|
pre_norm=resnet_pre_norm, |
|
use_nin_shortcut=True, |
|
down=True, |
|
kernel="fir", |
|
) |
|
self.downsamplers = nn.ModuleList([FirDownsample2D(in_channels, out_channels=out_channels)]) |
|
self.skip_conv = nn.Conv2d(3, out_channels, kernel_size=(1, 1), stride=(1, 1)) |
|
else: |
|
self.resnet_down = None |
|
self.downsamplers = None |
|
self.skip_conv = None |
|
|
|
def forward(self, hidden_states, temb=None, skip_sample=None): |
|
output_states = () |
|
|
|
for resnet, attn in zip(self.resnets, self.attentions): |
|
hidden_states = resnet(hidden_states, temb) |
|
hidden_states = attn(hidden_states) |
|
output_states += (hidden_states,) |
|
|
|
if self.downsamplers is not None: |
|
hidden_states = self.resnet_down(hidden_states, temb) |
|
for downsampler in self.downsamplers: |
|
skip_sample = downsampler(skip_sample) |
|
|
|
hidden_states = self.skip_conv(skip_sample) + hidden_states |
|
|
|
output_states += (hidden_states,) |
|
|
|
return hidden_states, output_states, skip_sample |
|
|
|
|
|
class SkipDownBlock2D(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels: int, |
|
out_channels: int, |
|
temb_channels: int, |
|
dropout: float = 0.0, |
|
num_layers: int = 1, |
|
resnet_eps: float = 1e-6, |
|
resnet_time_scale_shift: str = "default", |
|
resnet_act_fn: str = "swish", |
|
resnet_pre_norm: bool = True, |
|
output_scale_factor=np.sqrt(2.0), |
|
add_downsample=True, |
|
downsample_padding=1, |
|
): |
|
super().__init__() |
|
self.resnets = nn.ModuleList([]) |
|
|
|
for i in range(num_layers): |
|
in_channels = in_channels if i == 0 else out_channels |
|
self.resnets.append( |
|
ResnetBlock2D( |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
temb_channels=temb_channels, |
|
eps=resnet_eps, |
|
groups=min(in_channels // 4, 32), |
|
groups_out=min(out_channels // 4, 32), |
|
dropout=dropout, |
|
time_embedding_norm=resnet_time_scale_shift, |
|
non_linearity=resnet_act_fn, |
|
output_scale_factor=output_scale_factor, |
|
pre_norm=resnet_pre_norm, |
|
) |
|
) |
|
|
|
if add_downsample: |
|
self.resnet_down = ResnetBlock2D( |
|
in_channels=out_channels, |
|
out_channels=out_channels, |
|
temb_channels=temb_channels, |
|
eps=resnet_eps, |
|
groups=min(out_channels // 4, 32), |
|
dropout=dropout, |
|
time_embedding_norm=resnet_time_scale_shift, |
|
non_linearity=resnet_act_fn, |
|
output_scale_factor=output_scale_factor, |
|
pre_norm=resnet_pre_norm, |
|
use_nin_shortcut=True, |
|
down=True, |
|
kernel="fir", |
|
) |
|
self.downsamplers = nn.ModuleList([FirDownsample2D(in_channels, out_channels=out_channels)]) |
|
self.skip_conv = nn.Conv2d(3, out_channels, kernel_size=(1, 1), stride=(1, 1)) |
|
else: |
|
self.resnet_down = None |
|
self.downsamplers = None |
|
self.skip_conv = None |
|
|
|
def forward(self, hidden_states, temb=None, skip_sample=None): |
|
output_states = () |
|
|
|
for resnet in self.resnets: |
|
hidden_states = resnet(hidden_states, temb) |
|
output_states += (hidden_states,) |
|
|
|
if self.downsamplers is not None: |
|
hidden_states = self.resnet_down(hidden_states, temb) |
|
for downsampler in self.downsamplers: |
|
skip_sample = downsampler(skip_sample) |
|
|
|
hidden_states = self.skip_conv(skip_sample) + hidden_states |
|
|
|
output_states += (hidden_states,) |
|
|
|
return hidden_states, output_states, skip_sample |
|
|
|
|
|
class AttnUpBlock2D(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels: int, |
|
prev_output_channel: int, |
|
out_channels: int, |
|
temb_channels: int, |
|
dropout: float = 0.0, |
|
num_layers: int = 1, |
|
resnet_eps: float = 1e-6, |
|
resnet_time_scale_shift: str = "default", |
|
resnet_act_fn: str = "swish", |
|
resnet_groups: int = 32, |
|
resnet_pre_norm: bool = True, |
|
attention_type="default", |
|
attn_num_head_channels=1, |
|
output_scale_factor=1.0, |
|
add_upsample=True, |
|
): |
|
super().__init__() |
|
resnets = [] |
|
attentions = [] |
|
|
|
self.attention_type = attention_type |
|
|
|
for i in range(num_layers): |
|
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels |
|
resnet_in_channels = prev_output_channel if i == 0 else out_channels |
|
|
|
resnets.append( |
|
ResnetBlock2D( |
|
in_channels=resnet_in_channels + res_skip_channels, |
|
out_channels=out_channels, |
|
temb_channels=temb_channels, |
|
eps=resnet_eps, |
|
groups=resnet_groups, |
|
dropout=dropout, |
|
time_embedding_norm=resnet_time_scale_shift, |
|
non_linearity=resnet_act_fn, |
|
output_scale_factor=output_scale_factor, |
|
pre_norm=resnet_pre_norm, |
|
) |
|
) |
|
attentions.append( |
|
AttentionBlock( |
|
out_channels, |
|
num_head_channels=attn_num_head_channels, |
|
rescale_output_factor=output_scale_factor, |
|
eps=resnet_eps, |
|
) |
|
) |
|
|
|
self.attentions = nn.ModuleList(attentions) |
|
self.resnets = nn.ModuleList(resnets) |
|
|
|
if add_upsample: |
|
self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)]) |
|
else: |
|
self.upsamplers = None |
|
|
|
def forward(self, hidden_states, res_hidden_states_tuple, temb=None): |
|
for resnet, attn in zip(self.resnets, self.attentions): |
|
|
|
|
|
res_hidden_states = res_hidden_states_tuple[-1] |
|
res_hidden_states_tuple = res_hidden_states_tuple[:-1] |
|
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) |
|
|
|
hidden_states = resnet(hidden_states, temb) |
|
hidden_states = attn(hidden_states) |
|
|
|
if self.upsamplers is not None: |
|
for upsampler in self.upsamplers: |
|
hidden_states = upsampler(hidden_states) |
|
|
|
return hidden_states |
|
|
|
|
|
class CrossAttnUpBlock2D(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels: int, |
|
out_channels: int, |
|
prev_output_channel: int, |
|
temb_channels: int, |
|
dropout: float = 0.0, |
|
num_layers: int = 1, |
|
resnet_eps: float = 1e-6, |
|
resnet_time_scale_shift: str = "default", |
|
resnet_act_fn: str = "swish", |
|
resnet_groups: int = 32, |
|
resnet_pre_norm: bool = True, |
|
attn_num_head_channels=1, |
|
cross_attention_dim=1280, |
|
attention_type="default", |
|
output_scale_factor=1.0, |
|
downsample_padding=1, |
|
add_upsample=True, |
|
): |
|
super().__init__() |
|
resnets = [] |
|
attentions = [] |
|
|
|
self.attention_type = attention_type |
|
self.attn_num_head_channels = attn_num_head_channels |
|
|
|
for i in range(num_layers): |
|
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels |
|
resnet_in_channels = prev_output_channel if i == 0 else out_channels |
|
|
|
resnets.append( |
|
ResnetBlock2D( |
|
in_channels=resnet_in_channels + res_skip_channels, |
|
out_channels=out_channels, |
|
temb_channels=temb_channels, |
|
eps=resnet_eps, |
|
groups=resnet_groups, |
|
dropout=dropout, |
|
time_embedding_norm=resnet_time_scale_shift, |
|
non_linearity=resnet_act_fn, |
|
output_scale_factor=output_scale_factor, |
|
pre_norm=resnet_pre_norm, |
|
) |
|
) |
|
attentions.append( |
|
SpatialTransformer( |
|
out_channels, |
|
attn_num_head_channels, |
|
out_channels // attn_num_head_channels, |
|
depth=1, |
|
context_dim=cross_attention_dim, |
|
) |
|
) |
|
self.attentions = nn.ModuleList(attentions) |
|
self.resnets = nn.ModuleList(resnets) |
|
|
|
if add_upsample: |
|
self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)]) |
|
else: |
|
self.upsamplers = None |
|
|
|
def set_attention_slice(self, slice_size): |
|
if slice_size is not None and self.attn_num_head_channels % slice_size != 0: |
|
raise ValueError( |
|
f"Make sure slice_size {slice_size} is a divisor of " |
|
f"the number of heads used in cross_attention {self.attn_num_head_channels}" |
|
) |
|
if slice_size is not None and slice_size > self.attn_num_head_channels: |
|
raise ValueError( |
|
f"Chunk_size {slice_size} has to be smaller or equal to " |
|
f"the number of heads used in cross_attention {self.attn_num_head_channels}" |
|
) |
|
|
|
for attn in self.attentions: |
|
attn._set_attention_slice(slice_size) |
|
|
|
def forward(self, hidden_states, res_hidden_states_tuple, temb=None, encoder_hidden_states=None): |
|
for resnet, attn in zip(self.resnets, self.attentions): |
|
|
|
|
|
res_hidden_states = res_hidden_states_tuple[-1] |
|
res_hidden_states_tuple = res_hidden_states_tuple[:-1] |
|
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) |
|
|
|
hidden_states = resnet(hidden_states, temb) |
|
hidden_states = attn(hidden_states, context=encoder_hidden_states) |
|
|
|
if self.upsamplers is not None: |
|
for upsampler in self.upsamplers: |
|
hidden_states = upsampler(hidden_states) |
|
|
|
return hidden_states |
|
|
|
|
|
class UpBlock2D(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels: int, |
|
prev_output_channel: int, |
|
out_channels: int, |
|
temb_channels: int, |
|
dropout: float = 0.0, |
|
num_layers: int = 1, |
|
resnet_eps: float = 1e-6, |
|
resnet_time_scale_shift: str = "default", |
|
resnet_act_fn: str = "swish", |
|
resnet_groups: int = 32, |
|
resnet_pre_norm: bool = True, |
|
output_scale_factor=1.0, |
|
add_upsample=True, |
|
): |
|
super().__init__() |
|
resnets = [] |
|
|
|
for i in range(num_layers): |
|
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels |
|
resnet_in_channels = prev_output_channel if i == 0 else out_channels |
|
|
|
resnets.append( |
|
ResnetBlock2D( |
|
in_channels=resnet_in_channels + res_skip_channels, |
|
out_channels=out_channels, |
|
temb_channels=temb_channels, |
|
eps=resnet_eps, |
|
groups=resnet_groups, |
|
dropout=dropout, |
|
time_embedding_norm=resnet_time_scale_shift, |
|
non_linearity=resnet_act_fn, |
|
output_scale_factor=output_scale_factor, |
|
pre_norm=resnet_pre_norm, |
|
) |
|
) |
|
|
|
self.resnets = nn.ModuleList(resnets) |
|
|
|
if add_upsample: |
|
self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)]) |
|
else: |
|
self.upsamplers = None |
|
|
|
def forward(self, hidden_states, res_hidden_states_tuple, temb=None): |
|
for resnet in self.resnets: |
|
|
|
|
|
res_hidden_states = res_hidden_states_tuple[-1] |
|
res_hidden_states_tuple = res_hidden_states_tuple[:-1] |
|
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) |
|
|
|
hidden_states = resnet(hidden_states, temb) |
|
|
|
if self.upsamplers is not None: |
|
for upsampler in self.upsamplers: |
|
hidden_states = upsampler(hidden_states) |
|
|
|
return hidden_states |
|
|
|
|
|
class UpDecoderBlock2D(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels: int, |
|
out_channels: int, |
|
dropout: float = 0.0, |
|
num_layers: int = 1, |
|
resnet_eps: float = 1e-6, |
|
resnet_time_scale_shift: str = "default", |
|
resnet_act_fn: str = "swish", |
|
resnet_groups: int = 32, |
|
resnet_pre_norm: bool = True, |
|
output_scale_factor=1.0, |
|
add_upsample=True, |
|
): |
|
super().__init__() |
|
resnets = [] |
|
|
|
for i in range(num_layers): |
|
input_channels = in_channels if i == 0 else out_channels |
|
|
|
resnets.append( |
|
ResnetBlock2D( |
|
in_channels=input_channels, |
|
out_channels=out_channels, |
|
temb_channels=None, |
|
eps=resnet_eps, |
|
groups=resnet_groups, |
|
dropout=dropout, |
|
time_embedding_norm=resnet_time_scale_shift, |
|
non_linearity=resnet_act_fn, |
|
output_scale_factor=output_scale_factor, |
|
pre_norm=resnet_pre_norm, |
|
) |
|
) |
|
|
|
self.resnets = nn.ModuleList(resnets) |
|
|
|
if add_upsample: |
|
self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)]) |
|
else: |
|
self.upsamplers = None |
|
|
|
def forward(self, hidden_states): |
|
for resnet in self.resnets: |
|
hidden_states = resnet(hidden_states, temb=None) |
|
|
|
if self.upsamplers is not None: |
|
for upsampler in self.upsamplers: |
|
hidden_states = upsampler(hidden_states) |
|
|
|
return hidden_states |
|
|
|
|
|
class AttnUpDecoderBlock2D(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels: int, |
|
out_channels: int, |
|
dropout: float = 0.0, |
|
num_layers: int = 1, |
|
resnet_eps: float = 1e-6, |
|
resnet_time_scale_shift: str = "default", |
|
resnet_act_fn: str = "swish", |
|
resnet_groups: int = 32, |
|
resnet_pre_norm: bool = True, |
|
attn_num_head_channels=1, |
|
output_scale_factor=1.0, |
|
add_upsample=True, |
|
): |
|
super().__init__() |
|
resnets = [] |
|
attentions = [] |
|
|
|
for i in range(num_layers): |
|
input_channels = in_channels if i == 0 else out_channels |
|
|
|
resnets.append( |
|
ResnetBlock2D( |
|
in_channels=input_channels, |
|
out_channels=out_channels, |
|
temb_channels=None, |
|
eps=resnet_eps, |
|
groups=resnet_groups, |
|
dropout=dropout, |
|
time_embedding_norm=resnet_time_scale_shift, |
|
non_linearity=resnet_act_fn, |
|
output_scale_factor=output_scale_factor, |
|
pre_norm=resnet_pre_norm, |
|
) |
|
) |
|
attentions.append( |
|
AttentionBlock( |
|
out_channels, |
|
num_head_channels=attn_num_head_channels, |
|
rescale_output_factor=output_scale_factor, |
|
eps=resnet_eps, |
|
num_groups=resnet_groups, |
|
) |
|
) |
|
|
|
self.attentions = nn.ModuleList(attentions) |
|
self.resnets = nn.ModuleList(resnets) |
|
|
|
if add_upsample: |
|
self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)]) |
|
else: |
|
self.upsamplers = None |
|
|
|
def forward(self, hidden_states): |
|
for resnet, attn in zip(self.resnets, self.attentions): |
|
hidden_states = resnet(hidden_states, temb=None) |
|
hidden_states = attn(hidden_states) |
|
|
|
if self.upsamplers is not None: |
|
for upsampler in self.upsamplers: |
|
hidden_states = upsampler(hidden_states) |
|
|
|
return hidden_states |
|
|
|
|
|
class AttnSkipUpBlock2D(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels: int, |
|
prev_output_channel: int, |
|
out_channels: int, |
|
temb_channels: int, |
|
dropout: float = 0.0, |
|
num_layers: int = 1, |
|
resnet_eps: float = 1e-6, |
|
resnet_time_scale_shift: str = "default", |
|
resnet_act_fn: str = "swish", |
|
resnet_pre_norm: bool = True, |
|
attn_num_head_channels=1, |
|
attention_type="default", |
|
output_scale_factor=np.sqrt(2.0), |
|
upsample_padding=1, |
|
add_upsample=True, |
|
): |
|
super().__init__() |
|
self.attentions = nn.ModuleList([]) |
|
self.resnets = nn.ModuleList([]) |
|
|
|
self.attention_type = attention_type |
|
|
|
for i in range(num_layers): |
|
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels |
|
resnet_in_channels = prev_output_channel if i == 0 else out_channels |
|
|
|
self.resnets.append( |
|
ResnetBlock2D( |
|
in_channels=resnet_in_channels + res_skip_channels, |
|
out_channels=out_channels, |
|
temb_channels=temb_channels, |
|
eps=resnet_eps, |
|
groups=min(resnet_in_channels + res_skip_channels // 4, 32), |
|
groups_out=min(out_channels // 4, 32), |
|
dropout=dropout, |
|
time_embedding_norm=resnet_time_scale_shift, |
|
non_linearity=resnet_act_fn, |
|
output_scale_factor=output_scale_factor, |
|
pre_norm=resnet_pre_norm, |
|
) |
|
) |
|
|
|
self.attentions.append( |
|
AttentionBlock( |
|
out_channels, |
|
num_head_channels=attn_num_head_channels, |
|
rescale_output_factor=output_scale_factor, |
|
eps=resnet_eps, |
|
) |
|
) |
|
|
|
self.upsampler = FirUpsample2D(in_channels, out_channels=out_channels) |
|
if add_upsample: |
|
self.resnet_up = ResnetBlock2D( |
|
in_channels=out_channels, |
|
out_channels=out_channels, |
|
temb_channels=temb_channels, |
|
eps=resnet_eps, |
|
groups=min(out_channels // 4, 32), |
|
groups_out=min(out_channels // 4, 32), |
|
dropout=dropout, |
|
time_embedding_norm=resnet_time_scale_shift, |
|
non_linearity=resnet_act_fn, |
|
output_scale_factor=output_scale_factor, |
|
pre_norm=resnet_pre_norm, |
|
use_nin_shortcut=True, |
|
up=True, |
|
kernel="fir", |
|
) |
|
self.skip_conv = nn.Conv2d(out_channels, 3, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) |
|
self.skip_norm = torch.nn.GroupNorm( |
|
num_groups=min(out_channels // 4, 32), num_channels=out_channels, eps=resnet_eps, affine=True |
|
) |
|
self.act = nn.SiLU() |
|
else: |
|
self.resnet_up = None |
|
self.skip_conv = None |
|
self.skip_norm = None |
|
self.act = None |
|
|
|
def forward(self, hidden_states, res_hidden_states_tuple, temb=None, skip_sample=None): |
|
for resnet in self.resnets: |
|
|
|
res_hidden_states = res_hidden_states_tuple[-1] |
|
res_hidden_states_tuple = res_hidden_states_tuple[:-1] |
|
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) |
|
|
|
hidden_states = resnet(hidden_states, temb) |
|
|
|
hidden_states = self.attentions[0](hidden_states) |
|
|
|
if skip_sample is not None: |
|
skip_sample = self.upsampler(skip_sample) |
|
else: |
|
skip_sample = 0 |
|
|
|
if self.resnet_up is not None: |
|
skip_sample_states = self.skip_norm(hidden_states) |
|
skip_sample_states = self.act(skip_sample_states) |
|
skip_sample_states = self.skip_conv(skip_sample_states) |
|
|
|
skip_sample = skip_sample + skip_sample_states |
|
|
|
hidden_states = self.resnet_up(hidden_states, temb) |
|
|
|
return hidden_states, skip_sample |
|
|
|
|
|
class SkipUpBlock2D(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels: int, |
|
prev_output_channel: int, |
|
out_channels: int, |
|
temb_channels: int, |
|
dropout: float = 0.0, |
|
num_layers: int = 1, |
|
resnet_eps: float = 1e-6, |
|
resnet_time_scale_shift: str = "default", |
|
resnet_act_fn: str = "swish", |
|
resnet_pre_norm: bool = True, |
|
output_scale_factor=np.sqrt(2.0), |
|
add_upsample=True, |
|
upsample_padding=1, |
|
): |
|
super().__init__() |
|
self.resnets = nn.ModuleList([]) |
|
|
|
for i in range(num_layers): |
|
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels |
|
resnet_in_channels = prev_output_channel if i == 0 else out_channels |
|
|
|
self.resnets.append( |
|
ResnetBlock2D( |
|
in_channels=resnet_in_channels + res_skip_channels, |
|
out_channels=out_channels, |
|
temb_channels=temb_channels, |
|
eps=resnet_eps, |
|
groups=min((resnet_in_channels + res_skip_channels) // 4, 32), |
|
groups_out=min(out_channels // 4, 32), |
|
dropout=dropout, |
|
time_embedding_norm=resnet_time_scale_shift, |
|
non_linearity=resnet_act_fn, |
|
output_scale_factor=output_scale_factor, |
|
pre_norm=resnet_pre_norm, |
|
) |
|
) |
|
|
|
self.upsampler = FirUpsample2D(in_channels, out_channels=out_channels) |
|
if add_upsample: |
|
self.resnet_up = ResnetBlock2D( |
|
in_channels=out_channels, |
|
out_channels=out_channels, |
|
temb_channels=temb_channels, |
|
eps=resnet_eps, |
|
groups=min(out_channels // 4, 32), |
|
groups_out=min(out_channels // 4, 32), |
|
dropout=dropout, |
|
time_embedding_norm=resnet_time_scale_shift, |
|
non_linearity=resnet_act_fn, |
|
output_scale_factor=output_scale_factor, |
|
pre_norm=resnet_pre_norm, |
|
use_nin_shortcut=True, |
|
up=True, |
|
kernel="fir", |
|
) |
|
self.skip_conv = nn.Conv2d(out_channels, 3, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) |
|
self.skip_norm = torch.nn.GroupNorm( |
|
num_groups=min(out_channels // 4, 32), num_channels=out_channels, eps=resnet_eps, affine=True |
|
) |
|
self.act = nn.SiLU() |
|
else: |
|
self.resnet_up = None |
|
self.skip_conv = None |
|
self.skip_norm = None |
|
self.act = None |
|
|
|
def forward(self, hidden_states, res_hidden_states_tuple, temb=None, skip_sample=None): |
|
for resnet in self.resnets: |
|
|
|
res_hidden_states = res_hidden_states_tuple[-1] |
|
res_hidden_states_tuple = res_hidden_states_tuple[:-1] |
|
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) |
|
|
|
hidden_states = resnet(hidden_states, temb) |
|
|
|
if skip_sample is not None: |
|
skip_sample = self.upsampler(skip_sample) |
|
else: |
|
skip_sample = 0 |
|
|
|
if self.resnet_up is not None: |
|
skip_sample_states = self.skip_norm(hidden_states) |
|
skip_sample_states = self.act(skip_sample_states) |
|
skip_sample_states = self.skip_conv(skip_sample_states) |
|
|
|
skip_sample = skip_sample + skip_sample_states |
|
|
|
hidden_states = self.resnet_up(hidden_states, temb) |
|
|
|
return hidden_states, skip_sample |
|
|