|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import warnings |
|
from dataclasses import dataclass |
|
from typing import Optional, Tuple, Union |
|
|
|
import numpy as np |
|
import torch |
|
|
|
from ..configuration_utils import ConfigMixin, register_to_config |
|
from ..utils import BaseOutput |
|
from .scheduling_utils import SchedulerMixin, SchedulerOutput |
|
|
|
|
|
@dataclass |
|
class SdeVeOutput(BaseOutput): |
|
""" |
|
Output class for the ScoreSdeVeScheduler's step function output. |
|
|
|
Args: |
|
prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): |
|
Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the |
|
denoising loop. |
|
prev_sample_mean (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): |
|
Mean averaged `prev_sample`. Same as `prev_sample`, only mean-averaged over previous timesteps. |
|
""" |
|
|
|
prev_sample: torch.FloatTensor |
|
prev_sample_mean: torch.FloatTensor |
|
|
|
|
|
class ScoreSdeVeScheduler(SchedulerMixin, ConfigMixin): |
|
""" |
|
The variance exploding stochastic differential equation (SDE) scheduler. |
|
|
|
For more information, see the original paper: https://arxiv.org/abs/2011.13456 |
|
|
|
[`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__` |
|
function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`. |
|
[`~ConfigMixin`] also provides general loading and saving functionality via the [`~ConfigMixin.save_config`] and |
|
[`~ConfigMixin.from_config`] functios. |
|
|
|
Args: |
|
snr (`float`): |
|
coefficient weighting the step from the model_output sample (from the network) to the random noise. |
|
sigma_min (`float`): |
|
initial noise scale for sigma sequence in sampling procedure. The minimum sigma should mirror the |
|
distribution of the data. |
|
sigma_max (`float`): maximum value used for the range of continuous timesteps passed into the model. |
|
sampling_eps (`float`): the end value of sampling, where timesteps decrease progessively from 1 to |
|
epsilon. |
|
correct_steps (`int`): number of correction steps performed on a produced sample. |
|
tensor_format (`str`): "np" or "pt" for the expected format of samples passed to the Scheduler. |
|
""" |
|
|
|
@register_to_config |
|
def __init__( |
|
self, |
|
num_train_timesteps: int = 2000, |
|
snr: float = 0.15, |
|
sigma_min: float = 0.01, |
|
sigma_max: float = 1348.0, |
|
sampling_eps: float = 1e-5, |
|
correct_steps: int = 1, |
|
tensor_format: str = "pt", |
|
): |
|
|
|
self.timesteps = None |
|
|
|
self.set_sigmas(num_train_timesteps, sigma_min, sigma_max, sampling_eps) |
|
|
|
self.tensor_format = tensor_format |
|
self.set_format(tensor_format=tensor_format) |
|
|
|
def set_timesteps(self, num_inference_steps: int, sampling_eps: float = None): |
|
""" |
|
Sets the continuous timesteps used for the diffusion chain. Supporting function to be run before inference. |
|
|
|
Args: |
|
num_inference_steps (`int`): |
|
the number of diffusion steps used when generating samples with a pre-trained model. |
|
sampling_eps (`float`, optional): final timestep value (overrides value given at Scheduler instantiation). |
|
|
|
""" |
|
sampling_eps = sampling_eps if sampling_eps is not None else self.config.sampling_eps |
|
tensor_format = getattr(self, "tensor_format", "pt") |
|
if tensor_format == "np": |
|
self.timesteps = np.linspace(1, sampling_eps, num_inference_steps) |
|
elif tensor_format == "pt": |
|
self.timesteps = torch.linspace(1, sampling_eps, num_inference_steps) |
|
else: |
|
raise ValueError(f"`self.tensor_format`: {self.tensor_format} is not valid.") |
|
|
|
def set_sigmas( |
|
self, num_inference_steps: int, sigma_min: float = None, sigma_max: float = None, sampling_eps: float = None |
|
): |
|
""" |
|
Sets the noise scales used for the diffusion chain. Supporting function to be run before inference. |
|
|
|
The sigmas control the weight of the `drift` and `diffusion` components of sample update. |
|
|
|
Args: |
|
num_inference_steps (`int`): |
|
the number of diffusion steps used when generating samples with a pre-trained model. |
|
sigma_min (`float`, optional): |
|
initial noise scale value (overrides value given at Scheduler instantiation). |
|
sigma_max (`float`, optional): final noise scale value (overrides value given at Scheduler instantiation). |
|
sampling_eps (`float`, optional): final timestep value (overrides value given at Scheduler instantiation). |
|
|
|
""" |
|
sigma_min = sigma_min if sigma_min is not None else self.config.sigma_min |
|
sigma_max = sigma_max if sigma_max is not None else self.config.sigma_max |
|
sampling_eps = sampling_eps if sampling_eps is not None else self.config.sampling_eps |
|
if self.timesteps is None: |
|
self.set_timesteps(num_inference_steps, sampling_eps) |
|
|
|
tensor_format = getattr(self, "tensor_format", "pt") |
|
if tensor_format == "np": |
|
self.discrete_sigmas = np.exp(np.linspace(np.log(sigma_min), np.log(sigma_max), num_inference_steps)) |
|
self.sigmas = np.array([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps]) |
|
elif tensor_format == "pt": |
|
self.discrete_sigmas = torch.exp(torch.linspace(np.log(sigma_min), np.log(sigma_max), num_inference_steps)) |
|
self.sigmas = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps]) |
|
else: |
|
raise ValueError(f"`self.tensor_format`: {self.tensor_format} is not valid.") |
|
|
|
def get_adjacent_sigma(self, timesteps, t): |
|
tensor_format = getattr(self, "tensor_format", "pt") |
|
if tensor_format == "np": |
|
return np.where(timesteps == 0, np.zeros_like(t), self.discrete_sigmas[timesteps - 1]) |
|
elif tensor_format == "pt": |
|
return torch.where( |
|
timesteps == 0, |
|
torch.zeros_like(t.to(timesteps.device)), |
|
self.discrete_sigmas[timesteps - 1].to(timesteps.device), |
|
) |
|
|
|
raise ValueError(f"`self.tensor_format`: {self.tensor_format} is not valid.") |
|
|
|
def set_seed(self, seed): |
|
warnings.warn( |
|
"The method `set_seed` is deprecated and will be removed in version `0.4.0`. Please consider passing a" |
|
" generator instead.", |
|
DeprecationWarning, |
|
) |
|
tensor_format = getattr(self, "tensor_format", "pt") |
|
if tensor_format == "np": |
|
np.random.seed(seed) |
|
elif tensor_format == "pt": |
|
torch.manual_seed(seed) |
|
else: |
|
raise ValueError(f"`self.tensor_format`: {self.tensor_format} is not valid.") |
|
|
|
def step_pred( |
|
self, |
|
model_output: Union[torch.FloatTensor, np.ndarray], |
|
timestep: int, |
|
sample: Union[torch.FloatTensor, np.ndarray], |
|
generator: Optional[torch.Generator] = None, |
|
return_dict: bool = True, |
|
**kwargs, |
|
) -> Union[SdeVeOutput, Tuple]: |
|
""" |
|
Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion |
|
process from the learned model outputs (most often the predicted noise). |
|
|
|
Args: |
|
model_output (`torch.FloatTensor` or `np.ndarray`): direct output from learned diffusion model. |
|
timestep (`int`): current discrete timestep in the diffusion chain. |
|
sample (`torch.FloatTensor` or `np.ndarray`): |
|
current instance of sample being created by diffusion process. |
|
generator: random number generator. |
|
return_dict (`bool`): option for returning tuple rather than SchedulerOutput class |
|
|
|
Returns: |
|
[`~schedulers.scheduling_sde_ve.SdeVeOutput`] or `tuple`: [`~schedulers.scheduling_sde_ve.SdeVeOutput`] if |
|
`return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor. |
|
|
|
""" |
|
if "seed" in kwargs and kwargs["seed"] is not None: |
|
self.set_seed(kwargs["seed"]) |
|
|
|
if self.timesteps is None: |
|
raise ValueError( |
|
"`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler" |
|
) |
|
|
|
timestep = timestep * torch.ones( |
|
sample.shape[0], device=sample.device |
|
) |
|
timesteps = (timestep * (len(self.timesteps) - 1)).long() |
|
|
|
|
|
timesteps = timesteps.to(self.discrete_sigmas.device) |
|
|
|
sigma = self.discrete_sigmas[timesteps].to(sample.device) |
|
adjacent_sigma = self.get_adjacent_sigma(timesteps, timestep).to(sample.device) |
|
drift = self.zeros_like(sample) |
|
diffusion = (sigma**2 - adjacent_sigma**2) ** 0.5 |
|
|
|
|
|
|
|
drift = drift - diffusion[:, None, None, None] ** 2 * model_output |
|
|
|
|
|
noise = self.randn_like(sample, generator=generator) |
|
prev_sample_mean = sample - drift |
|
|
|
prev_sample = prev_sample_mean + diffusion[:, None, None, None] * noise |
|
|
|
if not return_dict: |
|
return (prev_sample, prev_sample_mean) |
|
|
|
return SdeVeOutput(prev_sample=prev_sample, prev_sample_mean=prev_sample_mean) |
|
|
|
def step_correct( |
|
self, |
|
model_output: Union[torch.FloatTensor, np.ndarray], |
|
sample: Union[torch.FloatTensor, np.ndarray], |
|
generator: Optional[torch.Generator] = None, |
|
return_dict: bool = True, |
|
**kwargs, |
|
) -> Union[SchedulerOutput, Tuple]: |
|
""" |
|
Correct the predicted sample based on the output model_output of the network. This is often run repeatedly |
|
after making the prediction for the previous timestep. |
|
|
|
Args: |
|
model_output (`torch.FloatTensor` or `np.ndarray`): direct output from learned diffusion model. |
|
sample (`torch.FloatTensor` or `np.ndarray`): |
|
current instance of sample being created by diffusion process. |
|
generator: random number generator. |
|
return_dict (`bool`): option for returning tuple rather than SchedulerOutput class |
|
|
|
Returns: |
|
[`~schedulers.scheduling_sde_ve.SdeVeOutput`] or `tuple`: [`~schedulers.scheduling_sde_ve.SdeVeOutput`] if |
|
`return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor. |
|
|
|
""" |
|
if "seed" in kwargs and kwargs["seed"] is not None: |
|
self.set_seed(kwargs["seed"]) |
|
|
|
if self.timesteps is None: |
|
raise ValueError( |
|
"`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler" |
|
) |
|
|
|
|
|
|
|
noise = self.randn_like(sample, generator=generator) |
|
|
|
|
|
grad_norm = self.norm(model_output) |
|
noise_norm = self.norm(noise) |
|
step_size = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 |
|
step_size = step_size * torch.ones(sample.shape[0]).to(sample.device) |
|
|
|
|
|
|
|
prev_sample_mean = sample + step_size[:, None, None, None] * model_output |
|
prev_sample = prev_sample_mean + ((step_size * 2) ** 0.5)[:, None, None, None] * noise |
|
|
|
if not return_dict: |
|
return (prev_sample,) |
|
|
|
return SchedulerOutput(prev_sample=prev_sample) |
|
|
|
def __len__(self): |
|
return self.config.num_train_timesteps |
|
|