import streamlit as st import os import json from openai import AzureOpenAI from model import invoke, create_models, configure_settings, load_documents_and_create_index, \ create_chat_prompt_template, execute_query client = AzureOpenAI(azure_endpoint = "https://personalityanalysisfinetuning.openai.azure.com/",api_key=os.environ.get("AZURE_OPENAI_KEY"), api_version="2024-02-01") example_profile = { "Team": [ { "name": "JAMES ARTHUR", "main_profile": { "VISION": { "score": "HIGH" }, "IDEATION": { "score": "HIGH" }, "OPPORTUNISM": { "score": "HIGH" }, "DRIVE": { "score": "HIGH" }, "RESILIENCE": { "score": "HIGH" } }, "red_flag": { "HUBRIS": { "score": "HIGH" }, "MERCURIAL": { "score": "LOW" }, "DOMINANT": { "score": "HIGH" }, "MACHIAVELLIAN": { "score": "AVERAGE" } } }, { "name": "LOUSIE HART", "main_profile": { "VISION": { "score": "AVERAGE" }, "IDEATION": { "score": "AVERAGE" }, "OPPORTUNISM": { "score": "AVERAGE" }, "DRIVE": { "score": "HIGH" }, "RESILIENCE": { "score": "HIGH" } }, "red_flag": { "HUBRIS": { "score": "AVERAGE" }, "MERCURIAL": { "score": "LOW" }, "DOMINANT": { "score": "HIGH" }, "MACHIAVELLIAN": { "score": "LOW" } } }, { "name": "SIMONE LEVY", "main_profile": { "VISION": { "score": "LOW" }, "IDEATION": { "score": "AVERAGE" }, "OPPORTUNISM": { "score": "LOW" }, "DRIVE": { "score": "AVERAGE" }, "RESILIENCE": { "score": "LOW" } }, "red_flag": { "HUBRIS": { "score": "LOW" }, "MERCURIAL": { "score": "LOW" }, "DOMINANT": { "score": "LOW" }, "MACHIAVELLIAN": { "score": "LOW" } } }, { "name": "Uri Lef", "main_profile": { "VISION": { "score": "HIGH" }, "IDEATION": { "score": "HIGH" }, "OPPORTUNISM": { "score": "HIGH" }, "DRIVE": { "score": "AVERAGE" }, "RESILIENCE": { "score": "LOW" } }, "red_flag": { "HUBRIS": { "score": "AVERAGE" }, "MERCURIAL": { "score": "HIGH" }, "DOMINANT": { "score": "HIGH" }, "MACHIAVELLIAN": { "score": "AVERAGE" } } } ] } # Function to generate a completion using OpenAI API # def generate_one_completion(message, temperature): # response = client.chat.completions.create( # model="personality_gpt4o", # temperature=temperature, # max_tokens=1000, # Adjust based on desired response length # frequency_penalty=0.2, # To avoid repetition # presence_penalty=0.2, # To introduce new topics # messages= message, # stream=False # ) # # return response import json def generate_prompt_from_profile(profile, version="TeamSummary"): with open('prompts.json') as f: prompt_sets = json.load(f)['Prompts'] prompt_templates = prompt_sets[version] try: team_members = profile['Team'] team_member_profiles = [] for member in team_members: profile = f"{member['name']}: Main Profile - VISION: {member['main_profile']['VISION']['score']}, " \ f"IDEATION: {member['main_profile']['IDEATION']['score']}, " \ f"OPPORTUNISM: {member['main_profile']['OPPORTUNISM']['score']}, " \ f"DRIVE: {member['main_profile']['DRIVE']['score']}, " \ f"RESILIENCE: {member['main_profile']['RESILIENCE']['score']}. " \ f"Red Flags - HUBRIS: {member['red_flag']['HUBRIS']['score']}, " \ f"MERCURIAL: {member['red_flag']['MERCURIAL']['score']}, " \ f"DOMINANT: {member['red_flag']['DOMINANT']['score']}, " \ f"MACHIAVELLIAN: {member['red_flag']['MACHIAVELLIAN']['score']}." team_member_profiles.append(profile) # Join the team member profiles into a single string team_member_profiles_str = "\n".join(team_member_profiles) prompt = prompt_templates[0].replace("{{TEAM_MEMBERS}}", team_member_profiles_str) except KeyError as e: return [{"role": "system", "content": f"Error processing profile data: missing {str(e)}"}] message = [ {"role": "system", "content": prompt_sets["System"][0]}, {"role": "user", "content": prompt} ] return message def display_profile_info(profile): st.markdown("### Profile Information:") team_members = profile["Team"] for member in team_members: st.sidebar.markdown(f"#### {member['name']}") main_profile = member["main_profile"] red_flag = member["red_flag"] st.sidebar.markdown("### Main Profile:") st.sidebar.markdown("\n".join([f"- **{attribute}**: {details['score']}" for attribute, details in main_profile.items()])) st.sidebar.markdown("### Red Flags:") st.sidebar.markdown("\n".join([f"- **{attribute}**: {details['score']}" for attribute, details in red_flag.items()])) # main_profile = profile["main_profile"] # red_flag = profile["red_flag"] # bio_info = profile["bio_information"] # # st.sidebar.markdown("### Bio Information: ") # st.sidebar.markdown("\n".join([f"- **{key.replace('_', ' ')}**: {value}" for key, value in bio_info.items()])) # st.sidebar.markdown("### Main Profile: ") # st.sidebar.markdown("\n".join([f"- **{attribute}**: {details['score']} - {details['summary']}" for attribute, details in main_profile.items()])) # st.sidebar.markdown("### Red Flags: ") # st.sidebar.markdown("\n".join([f"- **{attribute}**: {details['score']} - {details['summary']}" for attribute, details in red_flag.items()])) def validate_json(profile): required_keys = ['Team'] for key in required_keys: if key not in profile: return False, f"Key '{key}' is missing." if not isinstance(profile[key], dict): return False, f"'{key}' should be a dictionary." return True, "JSON structure is valid." def logout(): st.session_state['authenticated'] = False st.session_state['profile'] = None st.session_state['show_chat'] = None st.session_state['analysis'] = None st.rerun() def main_app(): sidebar_components() if st.button('Logout'): logout() # Streamlit app st.title('Metaprofiling\'s Career Insight Analyzer Demo') # Check if a profile is selected if st.session_state['profile']: profile = st.session_state['profile'] display_profile_info(profile) # Display the profile information st.markdown(""" ### Generation Temperature Adjust the 'Generation Temperature' to control the creativity of the AI responses. - A *lower temperature* (closer to 0.0) generates more predictable, conservative responses. - A *higher temperature* (closer to 1.0) generates more creative, diverse responses. """) # Temperature slider st.session_state['temperature'] = st.slider("",min_value=0.0, max_value=1.0, value=0.5, step=0.01) # Allow user to choose from different versions of the prompt st.session_state['version'] = st.selectbox("Select Prompt Version", ["TeamSummary"]) # Generate and display prompt if st.button(f'Analyze Profile ({st.session_state["version"]})'): #with st.spinner('Generating completion...'): prompt = generate_prompt_from_profile(profile, version=st.session_state['version']) with st.chat_message("assistant"): stream = client.chat.completions.create( model="personality_gpt4o", temperature=st.session_state['temperature'], max_tokens=1000, # Adjust based on desired response length frequency_penalty=0.2, # To avoid repetition presence_penalty=0.2, # To introduce new topics messages= prompt, stream=True) response = st.write_stream(stream) #st.markdown(response_test_taker) st.session_state['analysis'] = response st.session_state['show_chat'] = True st.rerun() # display the response if st.session_state['analysis']: st.markdown(st.session_state['analysis']) else: st.write("Please upload a profile JSON file or use the example profile.") # if st.session_state['analysis']: # st.markdown(st.session_state['analysis']) # #st.markdown("### Analysis:") # #analysis_container = st.container() # # with analysis_container: # #st.markdown(st.session_state['analysis'].choices[0].message.content) # # st.markdown("### Token Usage:") # token_usage_container = st.expander("Show Token Usage Details") # with token_usage_container: # total_tokens = st.session_state['analysis'].usage.total_tokens # prompt_tokens = st.session_state['analysis'].usage.prompt_tokens # completion_tokens = st.session_state['analysis'].usage.completion_tokens # costs = (0.01 / 1000) * prompt_tokens + (0.03 / 1000) * completion_tokens # st.write(f'**Total tokens:** {total_tokens}') # st.progress(completion_tokens / 1000) # st.write(f'**Prompt tokens:** {prompt_tokens}') # st.write(f'**Completion tokens:** {completion_tokens}') # st.write(f'**Generation costs ($):** {costs}') # Function to verify credentials and set the session state def verify_credentials(): if st.session_state['username'] == os.getenv("username_app") and st.session_state['password'] == os.getenv("password_app"): st.session_state['authenticated'] = True else: st.error("Invalid username or password") # Login page def login_page(): st.title("Welcome to Metaprofiling's Career Insight Analyzer Demo") st.write("This application provides in-depth analysis and insights into professional profiles. Please log in to continue.") # Description and Instructions st.markdown(""" ## How to Use This Application - Enter your username and password in the sidebar. - Click on 'Login' to access the application. - Once logged in, you will be able to upload and analyze professional profiles. """) st.sidebar.write("Login:") username = st.sidebar.text_input("Username")#, key='username') password = st.sidebar.text_input("Password", type="password")#, key='password') st.session_state['username'] = username st.session_state['password'] = password st.sidebar.button("Login", on_click=verify_credentials) def sidebar_components(): with st.sidebar: if st.button('Reset'): st.session_state['profile'] = None st.session_state['show_chat'] = None st.session_state['analysis'] = None st.rerun() if not st.session_state['show_chat']: # Instructions for JSON format st.markdown("### JSON File Requirements:") st.markdown("1. Must contain 'bio_information', 'main_profile', and 'red_flag' as top-level keys.") st.markdown("2. Both keys should have dictionary values.") # File uploader st.markdown("### Upload a profile JSON file") uploaded_file = st.file_uploader("", type=['json']) if uploaded_file is not None: try: profile_data = json.load(uploaded_file) valid, message = validate_json(profile_data) if valid: st.session_state['profile'] = profile_data else: st.error(message) except json.JSONDecodeError: st.error("Invalid JSON file. Please upload a valid JSON file.") # Button to load example profile if st.button('Use Example Profile'): st.session_state['profile'] = example_profile # elif uploaded_file is not None: # st.session_state['profile'] = json.load(uploaded_file) else: st.sidebar.title("Chat with Our Career Advisor") st.sidebar.markdown("Hello, we hope you learned something about yourself in this report. This chat is here so you can ask any questions you have about your report! It’s also a great tool to get ideas about how you can use the information in your report for your personal development and achieving your current goals.") # question_message = generate_prompt_from_profile(st.session_state['profile']) # question_message.append( # {"role": "system", "content": st.session_state['analysis'].choices[0].message.content}) # question_prompt = ( # f"Based on the earlier profile summary and analysis results about the individual, " # f"generate two insightful questions that could be asked by that individual for further discussion about themself:\n\n" # f"Provide me the questions in different new line." # f"Suggested Questions:\n" # ) #question_message.append({"role": "user", "content": question_prompt}) # questions = generate_one_completion(question_message, 0) # # questions_list = [question.strip() for question in questions.choices[0].message.content.split('\n') # if question.strip()] # questions_list = [] # print(questions_list) # # Prepare the questions for Markdown display # questions_markdown = "\n\n".join( # [f"Q{question}" for index, question in enumerate(questions_list[:2])]) # Name to be included in the questions name = st.session_state['profile']['bio_information'].get('Name', 'the individual') # List of question templates where {} will be replaced with the name question_templates = [ "What are the main risks associated with {}’s profile?", "What are the implications of {}’s profile for working with others?", "What conclusions might we draw from his profile about {}’s style of leadership?", "Looking specifically at {}'s Red Flags, are there any particular areas of concern?", "Based on this profile, is {} better suited as a COO or a CEO?", "If speed of execution is important, based on his profile, how likely is {} to be able to achieve this?", "How is {} likely to react to business uncertainty and disruption?", "Based on his profile, what should a coaching plan designed for {} focus on?" ] # Formatting each question template with the name questions_list = [question.format("Test Taker") for question in question_templates] # Prepare the questions for Markdown display questions_markdown = "\n\n".join( [f"Q{index + 1}: {question}" for index, question in enumerate(questions_list)]) # Code to display in the app st.sidebar.markdown("### Suggest Questions") st.sidebar.markdown(questions_markdown) # st.sidebar.text_area("Suggested Questions", value=questions.choices[0].message.content, height=200, disabled=True) user_input = st.sidebar.text_input("Ask a question about the profile analysis:") llm, embed_model = create_models() configure_settings(llm, embed_model) index = load_documents_and_create_index() if st.sidebar.button('Submit'): if user_input: # with open('prompts.json') as f: # prompt_sets = json.load(f)['Prompts'] # instruction = prompt_sets['Question'] # instruction = ( # "You are a knowledgeable advisor providing insights based on the specific analysis provided earlier. " # "Your responses should around 100 words, directly relate to the user's question, drawing on relevant details from the analysis. " # "If the user's question does not pertain to the analysis or is beyond the scope of the information provided, " # "politely decline to answer, stating that the question is outside the analysis context. Focus on delivering " # "concise, accurate, insightful, and relevant information. \n\n" # "Question: " + user_input # ) # message = generate_prompt_from_profile(st.session_state['profile']) # message.append({"role": "system", "content": st.session_state['analysis']}) # message.append({"role": "user", "content": "\n".join(instruction).replace('{{QUESTION}}', user_input)}) # with st.chat_message("assistant"): # stream = client.chat.completions.create( # model="personality_gpt4", # temperature=st.session_state['temperature'], # max_tokens=500, # Adjust based on desired response length # frequency_penalty=0.2, # To avoid repetition # presence_penalty=0.2, # To introduce new topics # messages=message, # stream=True # ) chat_prompt_template = create_chat_prompt_template(st.session_state['analysis']) response = execute_query(index, chat_prompt_template, user_input) #response = st.write_stream(stream) # output = generate_one_completion(message,st.session_state['temperature']) # # #st.sidebar.text_area("Response", value=output.choices[0].message.content, height=200, disabled=True) st.sidebar.markdown(response) # Display the sidebar components based on the state if 'show_chat' not in st.session_state: st.session_state['show_chat'] = None if 'profile' not in st.session_state: st.session_state['profile'] = None if 'analysis' not in st.session_state: st.session_state['analysis'] = None if 'temperature' not in st.session_state: st.session_state['temperature'] = 0 if 'version' not in st.session_state: st.session_state['version'] = "" # Initialize session state for username, password, and authentication if 'username' not in st.session_state: st.session_state['username'] = '' if 'password' not in st.session_state: st.session_state['password'] = '' if 'authenticated' not in st.session_state: st.session_state['authenticated'] = False # Show login or main app based on authentication if st.session_state['authenticated']: main_app() else: login_page()