Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,060 Bytes
0f079b2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 |
import argparse
import contextlib
import importlib
import logging
import os
import sys
import time
import traceback
import pytorch_lightning as pl
import torch
from pytorch_lightning import Trainer
from pytorch_lightning.callbacks import LearningRateMonitor, ModelCheckpoint
from pytorch_lightning.loggers import CSVLogger, TensorBoardLogger
from pytorch_lightning.utilities.rank_zero import rank_zero_only
import craftsman
from craftsman.systems.base import BaseSystem
from craftsman.utils.callbacks import (
CodeSnapshotCallback,
ConfigSnapshotCallback,
CustomProgressBar,
ProgressCallback,
)
from craftsman.utils.config import ExperimentConfig, load_config
from craftsman.utils.misc import get_rank
from craftsman.utils.typing import Optional
class ColoredFilter(logging.Filter):
"""
A logging filter to add color to certain log levels.
"""
RESET = "\033[0m"
RED = "\033[31m"
GREEN = "\033[32m"
YELLOW = "\033[33m"
BLUE = "\033[34m"
MAGENTA = "\033[35m"
CYAN = "\033[36m"
COLORS = {
"WARNING": YELLOW,
"INFO": GREEN,
"DEBUG": BLUE,
"CRITICAL": MAGENTA,
"ERROR": RED,
}
RESET = "\x1b[0m"
def __init__(self):
super().__init__()
def filter(self, record):
if record.levelname in self.COLORS:
color_start = self.COLORS[record.levelname]
record.levelname = f"{color_start}[{record.levelname}]"
record.msg = f"{record.msg}{self.RESET}"
return True
def load_custom_module(module_path):
module_name = os.path.basename(module_path)
if os.path.isfile(module_path):
sp = os.path.splitext(module_path)
module_name = sp[0]
try:
if os.path.isfile(module_path):
module_spec = importlib.util.spec_from_file_location(
module_name, module_path
)
else:
module_spec = importlib.util.spec_from_file_location(
module_name, os.path.join(module_path, "__init__.py")
)
module = importlib.util.module_from_spec(module_spec)
sys.modules[module_name] = module
module_spec.loader.exec_module(module)
return True
except Exception as e:
print(traceback.format_exc())
print(f"Cannot import {module_path} module for custom nodes:", e)
return False
def load_custom_modules():
node_paths = ["custom"]
node_import_times = []
if not os.path.exists("node_paths"):
return
for custom_node_path in node_paths:
possible_modules = os.listdir(custom_node_path)
if "__pycache__" in possible_modules:
possible_modules.remove("__pycache__")
for possible_module in possible_modules:
module_path = os.path.join(custom_node_path, possible_module)
if (
os.path.isfile(module_path)
and os.path.splitext(module_path)[1] != ".py"
):
continue
if module_path.endswith(".disabled"):
continue
time_before = time.perf_counter()
success = load_custom_module(module_path)
node_import_times.append(
(time.perf_counter() - time_before, module_path, success)
)
if len(node_import_times) > 0:
print("\nImport times for custom modules:")
for n in sorted(node_import_times):
if n[2]:
import_message = ""
else:
import_message = " (IMPORT FAILED)"
print("{:6.1f} seconds{}:".format(n[0], import_message), n[1])
print()
def main(args, extras) -> None:
# set CUDA_VISIBLE_DEVICES if needed, then import pytorch-lightning
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
env_gpus_str = os.environ.get("CUDA_VISIBLE_DEVICES", None)
env_gpus = list(env_gpus_str.split(",")) if env_gpus_str else []
selected_gpus = [0]
torch.set_float32_matmul_precision("high")
# Always rely on CUDA_VISIBLE_DEVICES if specific GPU ID(s) are specified.
# As far as Pytorch Lightning is concerned, we always use all available GPUs
# (possibly filtered by CUDA_VISIBLE_DEVICES).
devices = -1
if len(env_gpus) > 0:
n_gpus = len(env_gpus)
else:
selected_gpus = list(args.gpu.split(","))
n_gpus = len(selected_gpus)
print(f"Using {n_gpus} GPUs: {selected_gpus}")
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu
if args.typecheck:
from jaxtyping import install_import_hook
install_import_hook("craftsman", "typeguard.typechecked")
logger = logging.getLogger("pytorch_lightning")
if args.verbose:
logger.setLevel(logging.DEBUG)
for handler in logger.handlers:
if handler.stream == sys.stderr: # type: ignore
if not args.gradio:
handler.setFormatter(logging.Formatter("%(levelname)s %(message)s"))
handler.addFilter(ColoredFilter())
else:
handler.setFormatter(logging.Formatter("[%(levelname)s] %(message)s"))
load_custom_modules()
# parse YAML config to OmegaConf
cfg: ExperimentConfig
cfg = load_config(args.config, cli_args=extras, n_gpus=n_gpus)
# set a different seed for each device
pl.seed_everything(cfg.seed + get_rank(), workers=True)
dm = craftsman.find(cfg.data_type)(cfg.data)
system: BaseSystem = craftsman.find(cfg.system_type)(
cfg.system, resumed=cfg.resume is not None
)
system.set_save_dir(os.path.join(cfg.trial_dir, "save"))
if args.gradio:
fh = logging.FileHandler(os.path.join(cfg.trial_dir, "logs"))
fh.setLevel(logging.INFO)
if args.verbose:
fh.setLevel(logging.DEBUG)
fh.setFormatter(logging.Formatter("[%(levelname)s] %(message)s"))
logger.addHandler(fh)
callbacks = []
if args.train:
callbacks += [
ModelCheckpoint(
dirpath=os.path.join(cfg.trial_dir, "ckpts"), **cfg.checkpoint
),
LearningRateMonitor(logging_interval="step"),
CodeSnapshotCallback(
os.path.join(cfg.trial_dir, "code"), use_version=False
),
ConfigSnapshotCallback(
args.config,
cfg,
os.path.join(cfg.trial_dir, "configs"),
use_version=False,
),
]
if args.gradio:
callbacks += [
ProgressCallback(save_path=os.path.join(cfg.trial_dir, "progress"))
]
else:
callbacks += [CustomProgressBar(refresh_rate=1)]
def write_to_text(file, lines):
with open(file, "w") as f:
for line in lines:
f.write(line + "\n")
loggers = []
if args.train:
# make tensorboard logging dir to suppress warning
rank_zero_only(
lambda: os.makedirs(os.path.join(cfg.trial_dir, "tb_logs"), exist_ok=True)
)()
loggers += [
TensorBoardLogger(cfg.trial_dir, name="tb_logs"),
CSVLogger(cfg.trial_dir, name="csv_logs"),
] + system.get_loggers()
rank_zero_only(
lambda: write_to_text(
os.path.join(cfg.trial_dir, "cmd.txt"),
["python " + " ".join(sys.argv), str(args)],
)
)()
trainer = Trainer(
callbacks=callbacks,
logger=loggers,
inference_mode=False,
accelerator="gpu",
devices=devices,
# profiler="advanced",
**cfg.trainer,
)
def set_system_status(system: BaseSystem, ckpt_path: Optional[str]):
if ckpt_path is None:
return
ckpt = torch.load(ckpt_path, map_location="cpu")
system.set_resume_status(ckpt["epoch"], ckpt["global_step"])
if args.train:
trainer.fit(system, datamodule=dm, ckpt_path=cfg.resume)
trainer.test(system, datamodule=dm)
if args.gradio:
# also export assets if in gradio mode
trainer.predict(system, datamodule=dm)
elif args.validate:
# manually set epoch and global_step as they cannot be automatically resumed
set_system_status(system, cfg.resume)
trainer.validate(system, datamodule=dm, ckpt_path=cfg.resume)
elif args.test:
# manually set epoch and global_step as they cannot be automatically resumed
set_system_status(system, cfg.resume)
trainer.test(system, datamodule=dm, ckpt_path=cfg.resume)
elif args.export:
set_system_status(system, cfg.resume)
trainer.predict(system, datamodule=dm, ckpt_path=cfg.resume)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--config", required=True, help="path to config file")
parser.add_argument(
"--gpu",
default="0",
help="GPU(s) to be used. 0 means use the 1st available GPU. "
"1,2 means use the 2nd and 3rd available GPU. "
"If CUDA_VISIBLE_DEVICES is set before calling `launch.py`, "
"this argument is ignored and all available GPUs are always used.",
)
group = parser.add_mutually_exclusive_group(required=True)
group.add_argument("--train", action="store_true")
group.add_argument("--validate", action="store_true")
group.add_argument("--test", action="store_true")
group.add_argument("--export", action="store_true")
parser.add_argument(
"--gradio", action="store_true", help="if true, run in gradio mode"
)
parser.add_argument(
"--verbose", action="store_true", help="if true, set logging level to DEBUG"
)
parser.add_argument(
"--typecheck",
action="store_true",
help="whether to enable dynamic type checking",
)
args, extras = parser.parse_known_args()
if args.gradio:
with contextlib.redirect_stdout(sys.stderr):
main(args, extras)
else:
main(args, extras)
|