File size: 12,211 Bytes
8133633
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
import os
import warnings
from typing import Callable, List, Optional, Union, Dict, Any
import PIL.Image
import trimesh
import rembg
import torch
import numpy as np
from huggingface_hub import hf_hub_download
from diffusers.utils import BaseOutput

import craftsman
from craftsman.utils.config import ExperimentConfig, load_config

class MeshPipelineOutput(BaseOutput):
    """
    Output class for image pipelines.

    Args:
        images (`List[trimesh.Trimesh]` or `np.ndarray`)
            List of denoised trimesh meshes of length `batch_size` or a tuple of NumPy array with shape `((vertices, 3), (faces, 3)) of length `batch_size``.
    """

    meshes: Union[List[trimesh.Trimesh], np.ndarray]


class CraftsManPipeline():
    """
    Pipeline for text-guided image to image generation using CraftsMan(https://github.com/wyysf-98/CraftsMan).

    Args:
        feature_extractor ([`CLIPFeatureExtractor`]):
            Feature extractor for image pre-processing before being encoded.
    """
    def __init__(
        self,
        device: str,
        cfg: ExperimentConfig,
        system,
    ):
        self.device = device
        self.cfg = cfg
        self.system = system

    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], **kwargs):
        r"""
        A simpler version that instantiate a PyTorch diffusion pipeline from pretrained pipeline weights.
        The pipeline is set in evaluation mode (`model.eval()`) by default.
        """
        # 1. Download the checkpoints and configs
        # use snapshot download here to get it working from from_pretrained
        if not os.path.isdir(pretrained_model_name_or_path):
            ckpt_path = hf_hub_download(repo_id=pretrained_model_name_or_path, filename="model.ckpt", repo_type="model")
            config_path = hf_hub_download(repo_id=pretrained_model_name_or_path, filename="config.yaml", repo_type="model")
        else:
            ckpt_path = os.path.join(pretrained_model_name_or_path, "model.ckpt")
            config_path = os.path.join(pretrained_model_name_or_path, "config.yaml")

        # 2. Load the model
        device = kwargs.get("device", "cuda" if torch.cuda.is_available() else "cpu")
        cfg = load_config(config_path)
        system = craftsman.find(cfg.system_type)(cfg.system)
        print(f"Restoring states from the checkpoint path at {ckpt_path} with config {cfg}")
        ckpt = torch.load(ckpt_path, map_location=torch.device('cpu'))
        system.load_state_dict(
            ckpt["state_dict"] if "state_dict" in ckpt else ckpt,
        )
        system = system.to(device).eval()

        return cls(
            device=device,
            cfg=cfg,
            system=system
        )

    def check_inputs(
        self,
        image,
    ):
        r"""
        Check if the inputs are valid. Raise an error if not.
        """
        if isinstance(image, str):
            assert os.path.isfile(image) or image.startswith("http"), "Input image must be a valid URL or a file path."
        elif isinstance(image, (torch.Tensor, PIL.Image.Image)):
            raise ValueError("Input image must be a `torch.Tensor` or `PIL.Image.Image`.")
        
    def preprocess_image(
        self,
        images_pil: List[PIL.Image.Image],
        force: bool = False,
        background_color: List[int] = [255, 255, 255],
        foreground_ratio: float = 1.0,
    ):
        r"""
        Crop and remote the background of the input image
        Args:
            image_pil (`List[PIL.Image.Image]`):
                List of `PIL.Image.Image` objects representing the input image.
            force (`bool`, *optional*, defaults to `False`):
                Whether to force remove the background even if the image has an alpha channel.
        Returns:
            `List[PIL.Image.Image]`: List of `PIL.Image.Image` objects representing the preprocessed image.
        """
        preprocessed_images = []
        for i in range(len(images_pil)):
            image = images_pil[i]
            do_remove = True
            if image.mode == "RGBA" and image.getextrema()[3][0] < 255:
                # explain why current do not rm bg
                print("alhpa channl not enpty, skip remove background, using alpha channel as mask")
                background = PIL.Image.new("RGBA", image.size, (*background_color, 0))
                image = PIL.Image.alpha_composite(background, image)
                do_remove = False
            do_remove = do_remove or force
            if do_remove:
                image = rembg.remove(image)

            # calculate the min bbox of the image
            alpha = image.split()[-1]
            image = image.crop(alpha.getbbox())

            # Calculate the new size after rescaling
            new_size = tuple(int(dim * foreground_ratio) for dim in image.size)
            # Resize the image while maintaining the aspect ratio
            resized_image = image.resize(new_size)
            # Create a new image with the original size and white background
            padded_image = PIL.Image.new("RGBA", image.size, (*background_color, 0))
            paste_position = ((image.width - resized_image.width) // 2, (image.height - resized_image.height) // 2)
            padded_image.paste(resized_image, paste_position)

            # expand image to 1:1
            width, height = padded_image.size
            if width == height:
                preprocessed_images.append(padded_image)
                continue
            new_size = (max(width, height), max(width, height))
            new_image = PIL.Image.new("RGBA", new_size, (*background_color, 1))
            paste_position = ((new_size[0] - width) // 2, (new_size[1] - height) // 2)
            new_image.paste(padded_image, paste_position)
            preprocessed_images.append(new_image)

        return preprocessed_images

    @torch.no_grad()
    def __call__(
        self,
        image: Union[torch.FloatTensor, PIL.Image.Image, str],
        num_inference_steps: int = 50,
        guidance_scale: float = 7.5,
        eta: float = 0.0,
        num_meshes_per_prompt: Optional[int] = 1,
        output_type: Optional[str] = "trimesh",
        return_dict: bool = True,
        seed: Optional[int] = None,
        force_remove_background: bool = False,
        background_color: List[int] = [255, 255, 255],
        foreground_ratio: float = 0.95,
        mc_depth: int = 8,
    ):
        r"""
        Function invoked when calling the pipeline for generation.

        Args:
            image (`torch.FloatTensor` or `PIL.Image.Image`):
                `Image`, or tensor representing an image batch. The image will be encoded to its CLIP/DINO-v2 embedding 
                which the DiT will be conditioned on. 
            num_inference_steps (`int`, *optional*, defaults to 20):
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference.
            guidance_scale (`float`, *optional*, defaults to 10.0):
                Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
                `guidance_scale` is defined as `w` of equation 2. of [Imagen
                Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
                1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
                usually at the expense of lower image quality.
            eta (`float`, *optional*, defaults to 0.0):
                The eta parameter as defined in [DDIM](https://arxiv.org/abs/2010.02502). `eta` is a parameter that
                controls the amount of noise added to the latent space. It is only used with the DDIM scheduler and
                will be ignored for other schedulers. `eta` should be between [0, 1].
            num_meshes_per_prompt (`int`, *optional*, defaults to 1):
                The number of meshes to generate per prompt.
            output_type (`str`, *optional*, defaults to `"trimesh"`):
                The output format of the generate image. Choose between
                [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image`, `latents` or `np.array of v and f`.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
                plain tuple.
            seed (`int`, *optional*, defaults to `None`):
                Seed for the random number generator. Setting a seed will ensure reproducibility.
            force_remove_background (`bool`, *optional*, defaults to `False`):
                Whether to force remove the background even if the image has an alpha channel.
            foreground_ratio (`float`, *optional*, defaults to 1.0):
                The ratio of the foreground in the image. The foreground is the part of the image that is not the
                background. The foreground is resized to the size of the background image while maintaining the aspect
                ratio. The background is filled with black color. The foreground ratio should be between [0, 1].
            mc_depth (`int`, *optional*, defaults to 8):
                The resolution of the Marching Cubes algorithm. The resolution is the number of cubes in the x, y, and z.
                8 means 2^8 = 256 cubes in each dimension. The higher the resolution, the more detailed the mesh will be.
        Examples:

        Returns:
            [`~MeshPipelineOutput`] or `tuple`: [`~MeshPipelineOutput`] if `return_dict` is True, otherwise a `tuple`. 
            When returning a tuple, the first element is a list with the generated meshes.
        """
        # 0. Check inputs. Raise error if not correct
        self.check_inputs(
            image=image,
        )

        # 1. Define call parameters
        if isinstance(image, torch.Tensor):
            batch_size = image.shape[0]
        elif isinstance(image, PIL.Image.Image) or isinstance(image, str):
            batch_size = 1
        do_classifier_free_guidance = guidance_scale != 1.0

        # 2. Preprocess input image
        if isinstance(image, torch.Tensor):
            images_pil = [TF.to_pil_image(image[i]) for i in range(image.shape[0])]
        elif isinstance(image, PIL.Image.Image):
            images_pil = [image]
        elif isinstance(image, str):
            if image.startswith("http"):
                import requests
                images_pil = [PIL.Image.open(requests.get(image, stream=True).raw)]
            else:
                images_pil = [PIL.Image.open(image)]
        images_pil = self.preprocess_image(
            images_pil, 
            force=force_remove_background,
            background_color=background_color,
            foreground_ratio=foreground_ratio
            )

        # 3. Inference 
        latents = self.system.sample(
            {'image': images_pil},
            sample_times = num_meshes_per_prompt,
            steps = num_inference_steps,
            guidance_scale = guidance_scale,
            eta = eta,
            seed = seed
        )

        # 4. Post-processing
        if not output_type == "latent":
            mesh = []
            for i, cur_latents in enumerate(latents):
                print(f"Generating mesh {i+1}/{num_meshes_per_prompt}")
                mesh_v_f, has_surface = self.system.shape_model.extract_geometry(
                    cur_latents, 
                    octree_depth=mc_depth,
                    extract_mesh_func="mc"
                )
                
                if output_type == "trimesh":
                    import trimesh
                    cur_mesh = trimesh.Trimesh(vertices=mesh_v_f[0][0], faces=mesh_v_f[0][1])
                    mesh.append(cur_mesh)
                elif output_type == "np":
                    mesh.append(mesh_v_f[0])
        else:
            mesh = latents

        if not return_dict:
            return tuple(mesh)
        return MeshPipelineOutput(meshes=mesh)