Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
import argparse | |
import os | |
import json | |
import torch | |
import sys | |
import time | |
import importlib | |
import numpy as np | |
from omegaconf import OmegaConf | |
from huggingface_hub import hf_hub_download | |
from collections import OrderedDict | |
import trimesh | |
import gradio as gr | |
from typing import Any | |
proj_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) | |
sys.path.append(os.path.join(proj_dir)) | |
import tempfile | |
from apps.utils import * | |
_TITLE = '''CraftsMan: High-fidelity Mesh Generation with 3D Native Generation and Interactive Geometry Refiner''' | |
_DESCRIPTION = ''' | |
<div> | |
Select or upload a image, then just click 'Generate'. | |
<br> | |
By mimicking the artist/craftsman modeling workflow, we propose CraftsMan (aka ε εΏ) that uses 3D Latent Set Diffusion Model that directly generate coarse meshes, | |
then a multi-view normal enhanced image generation model is used to refine the mesh. | |
We provide the coarse 3D diffusion part here. | |
<br> | |
If you found CraftsMan is helpful, please help to β the <a href='https://github.com/wyysf-98/CraftsMan/' target='_blank'>Github Repo</a>. Thanks! | |
<a style="display:inline-block; margin-left: .5em" href='https://github.com/wyysf-98/CraftsMan/'><img src='https://img.shields.io/github/stars/wyysf-98/CraftsMan?style=social' /></a> | |
<br> | |
*If you have your own multi-view images, you can directly upload it. | |
</div> | |
''' | |
_CITE_ = r""" | |
--- | |
π **Citation** | |
If you find our work useful for your research or applications, please cite using this bibtex: | |
```bibtex | |
@article{craftsman, | |
author = {Weiyu Li and Jiarui Liu and Rui Chen and Yixun Liang and Xuelin Chen and Ping Tan and Xiaoxiao Long}, | |
title = {CraftsMan: High-fidelity Mesh Generation with 3D Native Generation and Interactive Geometry Refiner}, | |
journal = {arxiv:xxx}, | |
year = {2024}, | |
} | |
``` | |
π€ **Acknowledgements** | |
We use <a href='https://github.com/wjakob/instant-meshes' target='_blank'>Instant Meshes</a> to remesh the generated mesh to a lower face count, thanks to the authors for the great work. | |
π **License** | |
CraftsMan is under [AGPL-3.0](https://www.gnu.org/licenses/agpl-3.0.en.html), so any downstream solution and products (including cloud services) that include CraftsMan code or a trained model (both pretrained or custom trained) inside it should be open-sourced to comply with the AGPL conditions. If you have any questions about the usage of CraftsMan, please contact us first. | |
π§ **Contact** | |
If you have any questions, feel free to open a discussion or contact us at <b>[email protected]</b>. | |
""" | |
from apps.third_party.CRM.pipelines import TwoStagePipeline | |
from apps.third_party.LGM.pipeline_mvdream import MVDreamPipeline | |
model = None | |
cached_dir = None | |
stage1_config = OmegaConf.load(f"{parent_dir}/apps/third_party/CRM/configs/nf7_v3_SNR_rd_size_stroke.yaml").config | |
stage1_sampler_config = stage1_config.sampler | |
stage1_model_config = stage1_config.models | |
stage1_model_config.resume = hf_hub_download(repo_id="Zhengyi/CRM", filename="pixel-diffusion.pth", repo_type="model") | |
stage1_model_config.config = f"{parent_dir}/apps/third_party/CRM/" + stage1_model_config.config | |
crm_pipeline = None | |
sys.path.append(f"apps/third_party/LGM") | |
imgaedream_pipeline = None | |
def gen_mvimg( | |
mvimg_model, image, seed, guidance_scale, step, text, neg_text, elevation, | |
): | |
if seed == 0: | |
seed = np.random.randint(1, 65535) | |
if mvimg_model == "CRM": | |
global crm_pipeline | |
crm_pipeline.set_seed(seed) | |
mv_imgs = crm_pipeline( | |
image, | |
scale=guidance_scale, | |
step=step | |
)["stage1_images"] | |
return mv_imgs[5], mv_imgs[3], mv_imgs[2], mv_imgs[0] | |
elif mvimg_model == "ImageDream": | |
global imagedream_pipeline, generator | |
image = np.array(image).astype(np.float32) / 255.0 | |
image = image[..., :3] * image[..., 3:4] + (1 - image[..., 3:4]) | |
mv_imgs = imagedream_pipeline( | |
text, | |
image, | |
negative_prompt=neg_text, | |
guidance_scale=guidance_scale, | |
num_inference_steps=step, | |
elevation=elevation, | |
) | |
return mv_imgs[1], mv_imgs[2], mv_imgs[3], mv_imgs[0] | |
def image2mesh(view_front: np.ndarray, | |
view_right: np.ndarray, | |
view_back: np.ndarray, | |
view_left: np.ndarray, | |
more: bool = False, | |
scheluder_name: str ="DDIMScheduler", | |
guidance_scale: int = 7.5, | |
seed: int = 4, | |
octree_depth: int = 7): | |
sample_inputs = { | |
"mvimages": [[ | |
Image.fromarray(view_front), | |
Image.fromarray(view_right), | |
Image.fromarray(view_back), | |
Image.fromarray(view_left) | |
]] | |
} | |
global model | |
latents = model.sample( | |
sample_inputs, | |
sample_times=1, | |
guidance_scale=guidance_scale, | |
return_intermediates=False, | |
seed=seed | |
)[0] | |
# decode the latents to mesh | |
box_v = 1.1 | |
mesh_outputs, _ = model.shape_model.extract_geometry( | |
latents, | |
bounds=[-box_v, -box_v, -box_v, box_v, box_v, box_v], | |
octree_depth=octree_depth | |
) | |
assert len(mesh_outputs) == 1, "Only support single mesh output for gradio demo" | |
mesh = trimesh.Trimesh(mesh_outputs[0][0], mesh_outputs[0][1]) | |
# filepath = f"{cached_dir}/{time.time()}.obj" | |
filepath = tempfile.NamedTemporaryFile(suffix=f".obj", delete=False).name | |
mesh.export(filepath, include_normals=True) | |
if 'Remesh' in more: | |
remeshed_filepath = tempfile.NamedTemporaryFile(suffix=f"_remeshed.obj", delete=False).name | |
print("Remeshing with Instant Meshes...") | |
# target_face_count = int(len(mesh.faces)/10) | |
target_face_count = 2000 | |
command = f"{proj_dir}/apps/third_party/InstantMeshes {filepath} -f {target_face_count} -o {remeshed_filepath}" | |
os.system(command) | |
filepath = remeshed_filepath | |
# filepath = filepath.replace('.obj', '_remeshed.obj') | |
return filepath | |
if __name__=="__main__": | |
parser = argparse.ArgumentParser() | |
# parser.add_argument("--model_path", type=str, required=True, help="Path to the object file",) | |
parser.add_argument("--cached_dir", type=str, default="./gradio_cached_dir") | |
parser.add_argument("--device", type=int, default=0) | |
args = parser.parse_args() | |
cached_dir = args.cached_dir | |
os.makedirs(args.cached_dir, exist_ok=True) | |
device = torch.device(f"cuda:{args.device}" if torch.cuda.is_available() else "cpu") | |
print(f"using device: {device}") | |
# for multi-view images generation | |
background_choice = OrderedDict({ | |
"Alpha as Mask": "Alpha as Mask", | |
"Auto Remove Background": "Auto Remove Background", | |
"Original Image": "Original Image", | |
}) | |
mvimg_model_config_list = ["CRM", "ImageDream"] | |
crm_pipeline = TwoStagePipeline( | |
stage1_model_config, | |
stage1_sampler_config, | |
device=device, | |
dtype=torch.float16 | |
) | |
imagedream_pipeline = MVDreamPipeline.from_pretrained( | |
"ashawkey/imagedream-ipmv-diffusers", # remote weights | |
torch_dtype=torch.float16, | |
trust_remote_code=True, | |
) | |
# for 3D latent set diffusion | |
ckpt_path = "./ckpts/image-to-shape-diffusion/clip-mvrgb-modln-l256-e64-ne8-nd16-nl6/model.ckpt" | |
config_path = "./ckpts/image-to-shape-diffusion/clip-mvrgb-modln-l256-e64-ne8-nd16-nl6/config.yaml" | |
# ckpt_path = hf_hub_download(repo_id="wyysf/CraftsMan", filename="image-to-shape-diffusion/clip-mvrgb-modln-l256-e64-ne8-nd16-nl6/model.ckpt", repo_type="model") | |
# config_path = hf_hub_download(repo_id="wyysf/CraftsMan", filename="image-to-shape-diffusion/clip-mvrgb-modln-l256-e64-ne8-nd16-nl6/config.yaml", repo_type="model") | |
scheluder_dict = OrderedDict({ | |
"DDIMScheduler": 'diffusers.schedulers.DDIMScheduler', | |
# "DPMSolverMultistepScheduler": 'diffusers.schedulers.DPMSolverMultistepScheduler', # not support yet | |
# "UniPCMultistepScheduler": 'diffusers.schedulers.UniPCMultistepScheduler', # not support yet | |
}) | |
# main GUI | |
custom_theme = gr.themes.Soft(primary_hue="blue").set( | |
button_secondary_background_fill="*neutral_100", | |
button_secondary_background_fill_hover="*neutral_200") | |
custom_css = '''#disp_image { | |
text-align: center; /* Horizontally center the content */ | |
}''' | |
with gr.Blocks(title=_TITLE, theme=custom_theme, css=custom_css) as demo: | |
with gr.Row(): | |
with gr.Column(scale=1): | |
gr.Markdown('# ' + _TITLE) | |
gr.Markdown(_DESCRIPTION) | |
with gr.Row(): | |
with gr.Column(scale=2): | |
with gr.Column(): | |
# input image | |
with gr.Row(): | |
image_input = gr.Image( | |
label="Image Input", | |
image_mode="RGBA", | |
sources="upload", | |
type="pil", | |
) | |
run_btn = gr.Button('Generate', variant='primary', interactive=True) | |
with gr.Row(): | |
gr.Markdown('''Try a different <b>seed and MV Model</b> for better results. Good Luck :)''') | |
with gr.Row(): | |
seed = gr.Number(0, label='Seed', show_label=True) | |
mvimg_model = gr.Dropdown(value="CRM", label="MV Image Model", choices=list(mvimg_model_config_list)) | |
more = gr.CheckboxGroup(["Remesh", "Symmetry(TBD)"], label="More", show_label=False) | |
with gr.Row(): | |
# input prompt | |
text = gr.Textbox(label="Prompt (Opt.)", info="only works for ImageDream") | |
with gr.Accordion('Advanced options', open=False): | |
# negative prompt | |
neg_text = gr.Textbox(label="Negative Prompt", value='ugly, blurry, pixelated obscure, unnatural colors, poor lighting, dull, unclear, cropped, lowres, low quality, artifacts, duplicate') | |
# elevation | |
elevation = gr.Slider(label="elevation", minimum=-90, maximum=90, step=1, value=0) | |
with gr.Row(): | |
gr.Examples( | |
examples=[os.path.join("./apps/examples", i) for i in os.listdir("./apps/examples")], | |
inputs=[image_input], | |
examples_per_page=8 | |
) | |
with gr.Column(scale=4): | |
with gr.Row(): | |
output_model_obj = gr.Model3D( | |
label="Output Model (OBJ Format)", | |
camera_position=(90.0, 90.0, 3.5), | |
interactive=False, | |
) | |
with gr.Row(): | |
gr.Markdown('''*please note that the model is fliped due to the gradio viewer, please download the obj file and you will get the correct orientation.''') | |
with gr.Row(): | |
view_front = gr.Image(label="Front", interactive=True, show_label=True) | |
view_right = gr.Image(label="Right", interactive=True, show_label=True) | |
view_back = gr.Image(label="Back", interactive=True, show_label=True) | |
view_left = gr.Image(label="Left", interactive=True, show_label=True) | |
with gr.Accordion('Advanced options', open=False): | |
with gr.Row(equal_height=True): | |
run_mv_btn = gr.Button('Only Generate 2D', interactive=True) | |
run_3d_btn = gr.Button('Only Generate 3D', interactive=True) | |
with gr.Accordion('Advanced options (2D)', open=False): | |
with gr.Row(): | |
foreground_ratio = gr.Slider( | |
label="Foreground Ratio", | |
minimum=0.5, | |
maximum=1.0, | |
value=1.0, | |
step=0.05, | |
) | |
with gr.Row(): | |
background_choice = gr.Dropdown(label="Backgroud Choice", value="Auto Remove Background",choices=list(background_choice.keys())) | |
rmbg_type = gr.Dropdown(label="Backgroud Remove Type", value="rembg",choices=['sam', "rembg"]) | |
backgroud_color = gr.ColorPicker(label="Background Color", value="#FFFFFF", interactive=True) | |
# backgroud_color = gr.ColorPicker(label="Background Color", value="#7F7F7F", interactive=True) | |
with gr.Row(): | |
mvimg_guidance_scale = gr.Number(value=4.0, minimum=3, maximum=10, label="2D Guidance Scale") | |
mvimg_steps = gr.Number(value=30, minimum=20, maximum=100, label="2D Sample Steps") | |
with gr.Accordion('Advanced options (3D)', open=False): | |
with gr.Row(): | |
guidance_scale = gr.Number(label="3D Guidance Scale", value=7.5, minimum=3.0, maximum=10.0) | |
steps = gr.Number(value=50, minimum=20, maximum=100, label="3D Sample Steps") | |
with gr.Row(): | |
scheduler = gr.Dropdown(label="scheluder", value="DDIMScheduler",choices=list(scheluder_dict.keys())) | |
octree_depth = gr.Slider(label="Octree Depth", value=7, minimum=4, maximum=8, step=1) | |
gr.Markdown(_CITE_) | |
outputs = [output_model_obj] | |
rmbg = RMBG(device) | |
model = load_model(ckpt_path, config_path, device) | |
run_btn.click(fn=check_input_image, inputs=[image_input] | |
).success( | |
fn=rmbg.run, | |
inputs=[rmbg_type, image_input, foreground_ratio, background_choice, backgroud_color], | |
outputs=[image_input] | |
).success( | |
fn=gen_mvimg, | |
inputs=[mvimg_model, image_input, seed, mvimg_guidance_scale, mvimg_steps, text, neg_text, elevation], | |
outputs=[view_front, view_right, view_back, view_left] | |
).success( | |
fn=image2mesh, | |
inputs=[view_front, view_right, view_back, view_left, more, scheduler, guidance_scale, seed, octree_depth], | |
outputs=outputs, | |
api_name="generate_img2obj") | |
run_mv_btn.click(fn=gen_mvimg, | |
inputs=[mvimg_model, image_input, seed, mvimg_guidance_scale, mvimg_steps, text, neg_text, elevation], | |
outputs=[view_front, view_right, view_back, view_left] | |
) | |
run_3d_btn.click(fn=image2mesh, | |
inputs=[view_front, view_right, view_back, view_left, more, scheduler, guidance_scale, seed, octree_depth], | |
outputs=outputs, | |
api_name="generate_img2obj") | |
demo.queue().launch(share=True, allowed_paths=[args.cached_dir]) |