Spaces:
Running
on
Zero
Running
on
Zero
File size: 13,488 Bytes
0f079b2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 |
import math
import os
import json
from dataclasses import dataclass, field
import random
import imageio
import numpy as np
import pytorch_lightning as pl
import torch
import torch.nn.functional as F
from torch.utils.data import DataLoader, Dataset
from torchvision import transforms
from PIL import Image
from transformers import CLIPImageProcessor, CLIPTokenizer
from craftsman import register
from craftsman.utils.base import Updateable
from craftsman.utils.config import parse_structured
from craftsman.utils.typing import *
def rot2eul(R):
beta = -np.arcsin(R[2,0])
alpha = np.arctan2(R[2,1]/np.cos(beta),R[2,2]/np.cos(beta))
gamma = np.arctan2(R[1,0]/np.cos(beta),R[0,0]/np.cos(beta))
return np.array((alpha, beta, gamma))
def eul2rot(theta) :
R = np.array([[np.cos(theta[1])*np.cos(theta[2]), np.sin(theta[0])*np.sin(theta[1])*np.cos(theta[2]) - np.sin(theta[2])*np.cos(theta[0]), np.sin(theta[1])*np.cos(theta[0])*np.cos(theta[2]) + np.sin(theta[0])*np.sin(theta[2])],
[np.sin(theta[2])*np.cos(theta[1]), np.sin(theta[0])*np.sin(theta[1])*np.sin(theta[2]) + np.cos(theta[0])*np.cos(theta[2]), np.sin(theta[1])*np.sin(theta[2])*np.cos(theta[0]) - np.sin(theta[0])*np.cos(theta[2])],
[-np.sin(theta[1]), np.sin(theta[0])*np.cos(theta[1]), np.cos(theta[0])*np.cos(theta[1])]])
return R
@dataclass
class ObjaverseDataModuleConfig:
root_dir: str = None
data_type: str = "occupancy" # occupancy or sdf
n_samples: int = 4096 # number of points in input point cloud
scale: float = 1.0 # scale of the input point cloud and target supervision
noise_sigma: float = 0.0 # noise level of the input point cloud
load_supervision: bool = True # whether to load supervision
supervision_type: str = "occupancy" # occupancy, sdf, tsdf, tsdf_w_surface
n_supervision: int = 10000 # number of points in supervision
load_image: bool = False # whether to load images
image_data_path: str = "" # path to the image data
image_type: str = "rgb" # rgb, normal
background_color: Tuple[float, float, float] = field(
default_factory=lambda: (1.0, 1.0, 1.0)
)
idx: Optional[List[int]] = None # index of the image to load
n_views: int = 1 # number of views
rotate_points: bool = False # whether to rotate the input point cloud and the supervision
load_caption: bool = False # whether to load captions
caption_type: str = "text" # text, clip_embeds
tokenizer_pretrained_model_name_or_path: str = ""
batch_size: int = 32
num_workers: int = 0
class ObjaverseDataset(Dataset):
def __init__(self, cfg: Any, split: str) -> None:
super().__init__()
self.cfg: ObjaverseDataModuleConfig = cfg
self.split = split
self.uids = json.load(open(f'{cfg.root_dir}/{split}.json'))
print(f"Loaded {len(self.uids)} {split} uids")
if self.cfg.load_caption:
self.tokenizer = CLIPTokenizer.from_pretrained(self.cfg.tokenizer_pretrained_model_name_or_path)
self.background_color = torch.as_tensor(self.cfg.background_color)
self.distance = 1.0
self.camera_embedding = torch.as_tensor([
[[1, 0, 0, 0],
[0, 0, -1, -self.distance],
[0, 1, 0, 0],
[0, 0, 0, 1]], # front to back
[[0, 0, 1, self.distance],
[1, 0, 0, 0],
[0, 1, 0, 0],
[0, 0, 0, 1]], # right to left
[[-1, 0, 0, 0],
[0, 0, 1, self.distance],
[0, 1, 0, 0],
[0, 0, 0, 1]], # back to front
[[0, 0, -1, -self.distance],
[-1, 0, 0, 0],
[0, 1, 0, 0],
[0, 0, 0, 1]], # left to right
], dtype=torch.float32)
if self.cfg.n_views != 1:
assert self.cfg.n_views == self.camera_embedding.shape[0]
def __len__(self):
return len(self.uids)
def _load_shape(self, index: int) -> Dict[str, Any]:
if self.cfg.data_type == "occupancy":
# for input point cloud
pointcloud = np.load(f'{self.cfg.root_dir}/{self.uids[index]}/pointcloud.npz')
surface = np.asarray(pointcloud['points']) * 2 # range from -1 to 1
normal = np.asarray(pointcloud['normals'])
surface = np.concatenate([surface, normal], axis=1)
elif self.cfg.data_type == "sdf":
data = np.load(f'{self.cfg.root_dir}/{self.uids[index]}.npz')
# for input point cloud
surface = data["surface"]
else:
raise NotImplementedError(f"Data type {self.cfg.data_type} not implemented")
# random sampling
rng = np.random.default_rng()
ind = rng.choice(surface.shape[0], self.cfg.n_samples, replace=False)
surface = surface[ind]
# rescale data
surface[:, :3] = surface[:, :3] * self.cfg.scale # target scale
# add noise to input point cloud
surface[:, :3] += (np.random.rand(surface.shape[0], 3) * 2 - 1) * self.cfg.noise_sigma
ret = {
"uid": self.uids[index].split('/')[-1],
"surface": surface.astype(np.float32),
}
return ret
def _load_shape_supervision(self, index: int) -> Dict[str, Any]:
# for supervision
ret = {}
if self.cfg.data_type == "occupancy":
points = np.load(f'{self.cfg.root_dir}/{self.uids[index]}/points.npz')
rand_points = np.asarray(points['points']) * 2 # range from -1.1 to 1.1
occupancies = np.asarray(points['occupancies'])
occupancies = np.unpackbits(occupancies)
elif self.cfg.data_type == "sdf":
data = np.load(f'{self.cfg.root_dir}/{self.uids[index]}.npz')
rand_points = data['rand_points']
sdfs = data['sdfs']
else:
raise NotImplementedError(f"Data type {self.cfg.data_type} not implemented")
# random sampling
rng = np.random.default_rng()
ind = rng.choice(rand_points.shape[0], self.cfg.n_supervision, replace=False)
rand_points = rand_points[ind]
rand_points = rand_points * self.cfg.scale
ret["rand_points"] = rand_points.astype(np.float32)
if self.cfg.data_type == "occupancy":
assert self.cfg.supervision_type == "occupancy", "Only occupancy supervision is supported for occupancy data"
occupancies = occupancies[ind]
ret["occupancies"] = occupancies.astype(np.float32)
elif self.cfg.data_type == "sdf":
if self.cfg.supervision_type == "sdf":
ret["sdf"] = sdfs[ind].flatten().astype(np.float32)
elif self.cfg.supervision_type == "occupancy":
ret["occupancies"] = np.where(sdfs[ind].flatten() < 1e-3, 0, 1).astype(np.float32)
else:
raise NotImplementedError(f"Supervision type {self.cfg.supervision_type} not implemented")
return ret
def _load_image(self, index: int) -> Dict[str, Any]:
def _load_single_image(img_path):
img = torch.from_numpy(
np.asarray(
Image.fromarray(imageio.v2.imread(img_path))
.convert("RGBA")
)
/ 255.0
).float()
mask: Float[Tensor, "H W 1"] = img[:, :, -1:]
image: Float[Tensor, "H W 3"] = img[:, :, :3] * mask + self.background_color[
None, None, :
] * (1 - mask)
return image
ret = {}
if self.cfg.image_type == "rgb" or self.cfg.image_type == "normal":
assert self.cfg.n_views == 1, "Only single view is supported for single image"
sel_idx = random.choice(self.cfg.idx)
ret["sel_image_idx"] = sel_idx
if self.cfg.image_type == "rgb":
img_path = f'{self.cfg.image_data_path}/' + "/".join(self.uids[index].split('/')[-2:]) + f"/{sel_idx}.png"
elif self.cfg.image_type == "normal":
img_path = f'{self.cfg.image_data_path}/' + "/".join(self.uids[index].split('/')[-2:]) + f"/{sel_idx}_normal.png"
ret["image"] = _load_single_image(img_path)
ret["c2w"] = self.camera_embedding[sel_idx % 4]
elif self.cfg.image_type == "mvrgb" or self.cfg.image_type == "mvnormal":
sel_idx = random.choice(self.cfg.idx)
ret["sel_image_idx"] = sel_idx
mvimages = []
for i in range(self.cfg.n_views):
if self.cfg.image_type == "mvrgb":
img_path = f'{self.cfg.image_data_path}/' + "/".join(self.uids[index].split('/')[-2:]) + f"/{sel_idx+i}.png"
elif self.cfg.image_type == "mvnormal":
img_path = f'{self.cfg.image_data_path}/' + "/".join(self.uids[index].split('/')[-2:]) + f"/{sel_idx+i}_normal.png"
mvimages.append(_load_single_image(img_path))
ret["mvimages"] = torch.stack(mvimages)
ret["c2ws"] = self.camera_embedding
else:
raise NotImplementedError(f"Image type {self.cfg.image_type} not implemented")
return ret
def _load_caption(self, index: int, drop_text_embed: bool = False) -> Dict[str, Any]:
ret = {}
if self.cfg.caption_type == "text":
caption = eval(json.load(open(f'{self.cfg.image_data_path}/' + "/".join(self.uids[index].split('/')[-2:]) + f'/annotation.json')))
texts = [v for k, v in caption.items()]
sel_idx = random.randint(0, len(texts) - 1)
ret["sel_caption_idx"] = sel_idx
ret['text_input_ids'] = self.tokenizer(
texts[sel_idx] if not drop_text_embed else "",
max_length=self.tokenizer.model_max_length,
padding="max_length",
truncation=True,
return_tensors="pt"
).input_ids.detach()
else:
raise NotImplementedError(f"Caption type {self.cfg.caption_type} not implemented")
return ret
def get_data(self, index):
# load shape
ret = self._load_shape(index)
# load supervision for shape
if self.cfg.load_supervision:
ret.update(self._load_shape_supervision(index))
# load image
if self.cfg.load_image:
ret.update(self._load_image(index))
# load the rotation of the object and rotate the camera
rots = np.load(f'{self.cfg.image_data_path}/' + "/".join(self.uids[index].split('/')[-2:]) + f'/rots.npy')[ret['sel_image_idx']].astype(np.float32)
rots = torch.tensor(rots[:3, :3], dtype=torch.float32)
if "c2ws" in ret.keys():
ret["c2ws"][:, :3, :3] = torch.matmul(rots, ret["c2ws"][:, :3, :3])
ret["c2ws"][:, :3, 3] = torch.matmul(rots, ret["c2ws"][:, :3, 3].unsqueeze(-1)).squeeze(-1)
elif "c2w" in ret.keys():
ret["c2w"][:3, :3] = torch.matmul(rots, ret["c2w"][:3, :3])
ret["c2w"][:3, 3] = torch.matmul(rots, ret["c2w"][:3, 3].unsqueeze(-1)).squeeze(-1)
# load caption
if self.cfg.load_caption:
ret.update(self._load_caption(index))
return ret
def __getitem__(self, index):
try:
return self.get_data(index)
except Exception as e:
print(f"Error in {self.uids[index]}: {e}")
return self.__getitem__(np.random.randint(len(self)))
def collate(self, batch):
batch = torch.utils.data.default_collate(batch)
return batch
@register("objaverse-datamodule")
class ObjaverseDataModule(pl.LightningDataModule):
cfg: ObjaverseDataModuleConfig
def __init__(self, cfg: Optional[Union[dict, DictConfig]] = None) -> None:
super().__init__()
self.cfg = parse_structured(ObjaverseDataModuleConfig, cfg)
def setup(self, stage=None) -> None:
if stage in [None, "fit"]:
self.train_dataset = ObjaverseDataset(self.cfg, "train")
if stage in [None, "fit", "validate"]:
self.val_dataset = ObjaverseDataset(self.cfg, "val")
if stage in [None, "test", "predict"]:
self.test_dataset = ObjaverseDataset(self.cfg, "test")
def prepare_data(self):
pass
def general_loader(self, dataset, batch_size, collate_fn=None, num_workers=0) -> DataLoader:
return DataLoader(
dataset, batch_size=batch_size, collate_fn=collate_fn, num_workers=num_workers
)
def train_dataloader(self) -> DataLoader:
return self.general_loader(
self.train_dataset,
batch_size=self.cfg.batch_size,
collate_fn=self.train_dataset.collate,
num_workers=self.cfg.num_workers
)
def val_dataloader(self) -> DataLoader:
return self.general_loader(self.val_dataset, batch_size=1)
def test_dataloader(self) -> DataLoader:
return self.general_loader(self.test_dataset, batch_size=1)
def predict_dataloader(self) -> DataLoader:
return self.general_loader(self.test_dataset, batch_size=1) |