Spaces:
Running
on
Zero
Running
on
Zero
File size: 1,109 Bytes
d18f074 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 |
import gradio as gr
from diffusers import DiffusionPipeline
import torch
from PIL import Image
import spaces
# Load the pre-trained pipeline
pipeline = DiffusionPipeline.from_pretrained("stabilityai/stable-video-diffusion-img2vid-xt-1-1")
# Define the Gradio interface
interface = gr.Interface(
fn=lambda img: generate_video(img),
inputs=gr.Image(type="pil"),
outputs=gr.Video(),
title="Stable Video Diffusion",
description="Upload an image to generate a video",
theme="soft"
)
# Define the function to generate the video
def generate_video(img):
# Convert the input image to a tensor
img_tensor = torch.tensor(img).unsqueeze(0) / 255.0
# Run the pipeline to generate the video
output = pipeline(img_tensor)
# Extract the video frames from the output
video_frames = output["video_frames"]
# Convert the video frames to a video
video = []
for frame in video_frames:
video.append(Image.fromarray(frame.detach().cpu().numpy()))
# Return the generated video
return video
# Launch the Gradio app
interface.launch() |