Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import torch | |
import os | |
import random | |
import time | |
import math | |
import spaces | |
from glob import glob | |
from pathlib import Path | |
from typing import Optional | |
from diffusers import StableVideoDiffusionPipeline | |
from diffusers.utils import export_to_video | |
from PIL import Image | |
fps25Pipe = StableVideoDiffusionPipeline.from_pretrained( | |
"vdo/stable-video-diffusion-img2vid-xt-1-1", torch_dtype=torch.float16, variant="fp16" | |
) | |
fps25Pipe.to("cuda") | |
fps14Pipe = StableVideoDiffusionPipeline.from_pretrained( | |
"stabilityai/stable-video-diffusion-img2vid", torch_dtype=torch.float16, variant="fp16" | |
) | |
fps14Pipe.to("cuda") | |
max_64_bit_int = 2**63 - 1 | |
def animate( | |
image: Image, | |
seed: Optional[int] = 42, | |
randomize_seed: bool = True, | |
motion_bucket_id: int = 127, | |
fps_id: int = 6, | |
noise_aug_strength: float = 0.1, | |
decoding_t: int = 3, | |
video_format: str = "mp4", | |
frame_format: str = "webp", | |
version: str = "auto", | |
output_folder: str = "outputs", | |
): | |
start = time.time() | |
if image.mode == "RGBA": | |
image = image.convert("RGB") | |
if randomize_seed: | |
seed = random.randint(0, max_64_bit_int) | |
if version == "auto"): | |
if 14 < fps_id: | |
version = "svdxt" | |
else: | |
version = "svd" | |
frames = animate_on_gpu( | |
image, | |
seed, | |
motion_bucket_id, | |
fps_id, | |
noise_aug_strength, | |
decoding_t, | |
version | |
) | |
os.makedirs(output_folder, exist_ok=True) | |
base_count = len(glob(os.path.join(output_folder, "*." + video_format))) | |
video_path = os.path.join(output_folder, f"{base_count:06d}." + video_format) | |
export_to_video(frames, video_path, fps=fps_id) | |
end = time.time() | |
secondes = int(end - start) | |
minutes = math.floor(secondes / 60) | |
secondes = secondes - (minutes * 60) | |
hours = math.floor(minutes / 60) | |
minutes = minutes - (hours * 60) | |
information = ("Start the process again if you want a different result. " if randomize_seed else "") + \ | |
"Wait 2 min before a new run to avoid quota penalty or use another computer. " + \ | |
"The video has been generated in " + \ | |
((str(hours) + " h, ") if hours != 0 else "") + \ | |
((str(minutes) + " min, ") if hours != 0 or minutes != 0 else "") + \ | |
str(secondes) + " sec." | |
return gr.update(value=video_path, format=video_format), gr.update(value=video_path, visible=True), gr.update(label="Generated frames in *." + frame_format + " format", format = frame_format, value = frames, visible=True), seed, gr.update(value = information, visible = True) | |
def animate_on_gpu( | |
image: Image, | |
seed: Optional[int] = 42, | |
motion_bucket_id: int = 127, | |
fps_id: int = 6, | |
noise_aug_strength: float = 0.1, | |
decoding_t: int = 3, | |
version: str = "svdxt" | |
): | |
generator = torch.manual_seed(seed) | |
if version == "svdxt": | |
return fps25Pipe(image, decode_chunk_size=decoding_t, generator=generator, motion_bucket_id=motion_bucket_id, noise_aug_strength=noise_aug_strength, num_frames=25).frames[0] | |
else: | |
return fps14Pipe(image, decode_chunk_size=decoding_t, generator=generator, motion_bucket_id=motion_bucket_id, noise_aug_strength=noise_aug_strength, num_frames=25).frames[0] | |
def resize_image(image, output_size=(1024, 576)): | |
# Calculate aspect ratios | |
target_aspect = output_size[0] / output_size[1] # Aspect ratio of the desired size | |
image_aspect = image.width / image.height # Aspect ratio of the original image | |
# Do not touch the image if the size is good | |
if image.width == output_size[0] and image.height == output_size[1]: | |
return image | |
# Resize if the original image is larger | |
if image_aspect > target_aspect: | |
# Resize the image to match the target height, maintaining aspect ratio | |
new_height = output_size[1] | |
new_width = int(new_height * image_aspect) | |
resized_image = image.resize((new_width, new_height), Image.LANCZOS) | |
# Calculate coordinates for cropping | |
left = (new_width - output_size[0]) / 2 | |
top = 0 | |
right = (new_width + output_size[0]) / 2 | |
bottom = output_size[1] | |
else: | |
# Resize the image to match the target width, maintaining aspect ratio | |
new_width = output_size[0] | |
new_height = int(new_width / image_aspect) | |
resized_image = image.resize((new_width, new_height), Image.LANCZOS) | |
# Calculate coordinates for cropping | |
left = 0 | |
top = (new_height - output_size[1]) / 2 | |
right = output_size[0] | |
bottom = (new_height + output_size[1]) / 2 | |
# Crop the image | |
cropped_image = resized_image.crop((left, top, right, bottom)) | |
return cropped_image | |
with gr.Blocks() as demo: | |
gr.HTML(""" | |
<h1><center>Image-to-Video</center></h1> | |
<big><center>Animate your images into 25 frames of 1024x576 pixels freely, without account, without watermark and download the video</center></big> | |
<br/> | |
<p> | |
This demo is based on <i>Stable Video Diffusion</i> artificial intelligence. | |
No prompt or camera control is handled here. To control motions, rather use <i><a href="https://huggingface.co/spaces/TencentARC/MotionCtrl_SVD">MotionCtrl SVD</a></i>. | |
</p> | |
""") | |
with gr.Row(): | |
with gr.Column(): | |
image = gr.Image(label="Upload your image", type="pil") | |
with gr.Accordion("Advanced options", open=False): | |
fps_id = gr.Slider(label="Frames per second", info="The length of your video in seconds will be 25/fps", value=6, minimum=5, maximum=30) | |
motion_bucket_id = gr.Slider(label="Motion bucket id", info="Controls how much motion to add/remove from the image", value=127, minimum=1, maximum=255) | |
noise_aug_strength = gr.Slider(label="Noise strength", info="The noise to add", value=0.1, minimum=0, maximum=1, step=0.1) | |
decoding_t = gr.Slider(label="Decoding", info="Number of frames decoded at a time; this eats more VRAM; reduce if necessary", value=3, minimum=1, maximum=5, step=1) | |
video_format = gr.Radio([["*.mp4", "mp4"], ["*.ogg", "ogg"], ["*.webm", "webm"]], label="Video format for result", info="File extention", value="mp4", interactive=True) | |
frame_format = gr.Radio([["*.png", "png"], ["*.webp", "webp"], ["*.jpeg", "jpeg"], ["*.gif (unanimated)", "gif"], ["*.bmp", "bmp"]], label="Image format for frames", info="File extention", value="webp", interactive=True) | |
version = gr.Radio([["Auto", "auto"], ["ππ»ββοΈ SVD (trained on 14 f/s)", "svd"], ["ππ»ββοΈπ¨ SVD-XT (trained on 25 f/s)", "svdxt"]], label="Model", info="Trained model", value="auto", interactive=True) | |
seed = gr.Slider(label="Seed", value=42, randomize=True, minimum=0, maximum=max_64_bit_int, step=1) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
generate_btn = gr.Button(value="π Animate", variant="primary") | |
with gr.Column(): | |
video = gr.Video(label="Generated video", autoplay=True) | |
download_button = gr.DownloadButton(label="πΎ Download video", visible=False) | |
information_msg = gr.HTML(visible = False) | |
gallery = gr.Gallery(label="Generated frames", visible=False) | |
image.upload(fn=resize_image, inputs=image, outputs=image, queue=False) | |
generate_btn.click(fn=animate, inputs=[image, seed, randomize_seed, motion_bucket_id, fps_id, noise_aug_strength, decoding_t, video_format, frame_format, version], outputs=[video, download_button, gallery, seed, information_msg], api_name="video") | |
gr.Examples( | |
examples=[ | |
["Examples/Fire.webp", 42, True, 127, 25, 0.1, 3, "mp4", "png", "auto"], | |
["Examples/Water.png", 42, True, 127, 25, 0.1, 3, "mp4", "png", "auto"], | |
["Examples/Town.jpeg", 42, True, 127, 25, 0.1, 3, "mp4", "png", "auto"] | |
], | |
inputs=[image, seed, randomize_seed, motion_bucket_id, fps_id, noise_aug_strength, decoding_t, video_format, frame_format, version], | |
outputs=[video, download_button, gallery, seed, information_msg], | |
fn=animate, | |
run_on_click=True, | |
cache_examples=False, | |
) | |
if __name__ == "__main__": | |
demo.launch(share=True, show_api=False) |