Spaces:
Running
on
Zero
Running
on
Zero
Commit
•
c8b4b1d
1
Parent(s):
6ca6cf4
Add more options, from the most useful to the least one (#10)
Browse files- Add more options, from the most useful to the least one (01ac1c081925b409a4a920d2f7e69271e14e07d1)
Co-authored-by: Fabrice TIERCELIN <[email protected]>
app.py
CHANGED
@@ -1,5 +1,4 @@
|
|
1 |
import gradio as gr
|
2 |
-
#import gradio.helpers
|
3 |
import torch
|
4 |
import os
|
5 |
from glob import glob
|
@@ -12,7 +11,6 @@ from PIL import Image
|
|
12 |
|
13 |
import uuid
|
14 |
import random
|
15 |
-
from huggingface_hub import hf_hub_download
|
16 |
import spaces
|
17 |
|
18 |
pipe = StableVideoDiffusionPipeline.from_pretrained(
|
@@ -29,9 +27,9 @@ def sample(
|
|
29 |
randomize_seed: bool = True,
|
30 |
motion_bucket_id: int = 127,
|
31 |
fps_id: int = 6,
|
|
|
|
|
32 |
version: str = "svd_xt",
|
33 |
-
cond_aug: float = 0.02,
|
34 |
-
decoding_t: int = 3, # Number of frames decoded at a time! This eats most VRAM. Reduce if necessary.
|
35 |
device: str = "cuda",
|
36 |
output_folder: str = "outputs",
|
37 |
):
|
@@ -46,7 +44,7 @@ def sample(
|
|
46 |
base_count = len(glob(os.path.join(output_folder, "*.mp4")))
|
47 |
video_path = os.path.join(output_folder, f"{base_count:06d}.mp4")
|
48 |
|
49 |
-
frames = pipe(image, decode_chunk_size=decoding_t, generator=generator, motion_bucket_id=motion_bucket_id, noise_aug_strength=
|
50 |
export_to_video(frames, video_path, fps=fps_id)
|
51 |
|
52 |
return video_path, frames, seed
|
@@ -60,7 +58,7 @@ def resize_image(image, output_size=(1024, 576)):
|
|
60 |
if image.width == output_size[0] and image.height == output_size[1]:
|
61 |
return image
|
62 |
|
63 |
-
# Resize
|
64 |
if image_aspect > target_aspect:
|
65 |
# Resize the image to match the target height, maintaining aspect ratio
|
66 |
new_height = output_size[1]
|
@@ -94,17 +92,21 @@ with gr.Blocks() as demo:
|
|
94 |
with gr.Column():
|
95 |
image = gr.Image(label="Upload your image", type="pil")
|
96 |
with gr.Accordion("Advanced options", open=False):
|
|
|
|
|
|
|
|
|
97 |
seed = gr.Slider(label="Seed", value=42, randomize=True, minimum=0, maximum=max_64_bit_int, step=1)
|
98 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
99 |
-
|
100 |
-
fps_id = gr.Slider(label="Frames per second", info="The length of your video in seconds will be 25/fps", value=6, minimum=5, maximum=30)
|
101 |
generate_btn = gr.Button(value="Animate", variant="primary")
|
|
|
102 |
with gr.Column():
|
103 |
video = gr.Video(label="Generated video")
|
104 |
gallery = gr.Gallery(label="Generated frames")
|
105 |
|
106 |
image.upload(fn=resize_image, inputs=image, outputs=image, queue=False)
|
107 |
-
generate_btn.click(fn=sample, inputs=[image, seed, randomize_seed, motion_bucket_id, fps_id], outputs=[video, gallery, seed], api_name="video")
|
108 |
|
109 |
if __name__ == "__main__":
|
110 |
demo.launch(share=True, show_api=False)
|
|
|
1 |
import gradio as gr
|
|
|
2 |
import torch
|
3 |
import os
|
4 |
from glob import glob
|
|
|
11 |
|
12 |
import uuid
|
13 |
import random
|
|
|
14 |
import spaces
|
15 |
|
16 |
pipe = StableVideoDiffusionPipeline.from_pretrained(
|
|
|
27 |
randomize_seed: bool = True,
|
28 |
motion_bucket_id: int = 127,
|
29 |
fps_id: int = 6,
|
30 |
+
noise_aug_strength: float = 0.1,
|
31 |
+
decoding_t: int = 3,
|
32 |
version: str = "svd_xt",
|
|
|
|
|
33 |
device: str = "cuda",
|
34 |
output_folder: str = "outputs",
|
35 |
):
|
|
|
44 |
base_count = len(glob(os.path.join(output_folder, "*.mp4")))
|
45 |
video_path = os.path.join(output_folder, f"{base_count:06d}.mp4")
|
46 |
|
47 |
+
frames = pipe(image, decode_chunk_size=decoding_t, generator=generator, motion_bucket_id=motion_bucket_id, noise_aug_strength=noise_aug_strength, num_frames=25).frames[0]
|
48 |
export_to_video(frames, video_path, fps=fps_id)
|
49 |
|
50 |
return video_path, frames, seed
|
|
|
58 |
if image.width == output_size[0] and image.height == output_size[1]:
|
59 |
return image
|
60 |
|
61 |
+
# Resize if the original image is larger
|
62 |
if image_aspect > target_aspect:
|
63 |
# Resize the image to match the target height, maintaining aspect ratio
|
64 |
new_height = output_size[1]
|
|
|
92 |
with gr.Column():
|
93 |
image = gr.Image(label="Upload your image", type="pil")
|
94 |
with gr.Accordion("Advanced options", open=False):
|
95 |
+
fps_id = gr.Slider(label="Frames per second", info="The length of your video in seconds will be 25/fps", value=6, minimum=5, maximum=30)
|
96 |
+
motion_bucket_id = gr.Slider(label="Motion bucket id", info="Controls how much motion to add/remove from the image", value=127, minimum=1, maximum=255)
|
97 |
+
noise_aug_strength = gr.Slider(label="Noise strength", info="The noise to add", value=0.1, minimum=0, maximum=1, step=0.1)
|
98 |
+
decoding_t = gr.Slider(label="Decoding", info="Number of frames decoded at a time; this eats more VRAM; reduce if necessary", value=3, minimum=1, maximum=5, step=1)
|
99 |
seed = gr.Slider(label="Seed", value=42, randomize=True, minimum=0, maximum=max_64_bit_int, step=1)
|
100 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
101 |
+
|
|
|
102 |
generate_btn = gr.Button(value="Animate", variant="primary")
|
103 |
+
|
104 |
with gr.Column():
|
105 |
video = gr.Video(label="Generated video")
|
106 |
gallery = gr.Gallery(label="Generated frames")
|
107 |
|
108 |
image.upload(fn=resize_image, inputs=image, outputs=image, queue=False)
|
109 |
+
generate_btn.click(fn=sample, inputs=[image, seed, randomize_seed, motion_bucket_id, fps_id, noise_aug_strength, decoding_t], outputs=[video, gallery, seed], api_name="video")
|
110 |
|
111 |
if __name__ == "__main__":
|
112 |
demo.launch(share=True, show_api=False)
|