import gradio as gr import torch import os import random import spaces from glob import glob from pathlib import Path from typing import Optional from diffusers import StableVideoDiffusionPipeline from diffusers.utils import export_to_video from PIL import Image fps25Pipe = StableVideoDiffusionPipeline.from_pretrained( "vdo/stable-video-diffusion-img2vid-xt-1-1", torch_dtype=torch.float16, variant="fp16" ) fps25Pipe.to("cuda") fps14Pipe = StableVideoDiffusionPipeline.from_pretrained( "stabilityai/stable-video-diffusion-img2vid", torch_dtype=torch.float16, variant="fp16" ) fps14Pipe.to("cuda") max_64_bit_int = 2**63 - 1 def animate( image: Image, seed: Optional[int] = 42, randomize_seed: bool = True, motion_bucket_id: int = 127, fps_id: int = 6, noise_aug_strength: float = 0.1, decoding_t: int = 3, frame_format: str = "webp", version: str = "auto", output_folder: str = "outputs", ): if image.mode == "RGBA": image = image.convert("RGB") if randomize_seed: seed = random.randint(0, max_64_bit_int) frames = animate_on_gpu( image, seed, randomize_seed, motion_bucket_id, fps_id, noise_aug_strength, decoding_t, frame_format, version ) os.makedirs(output_folder, exist_ok=True) base_count = len(glob(os.path.join(output_folder, "*.mp4"))) video_path = os.path.join(output_folder, f"{base_count:06d}.mp4") export_to_video(frames, video_path, fps=fps_id) return video_path, gr.update(value=video_path, visible=True), gr.update(label="Generated frames in *." + frame_format + " format", format = frame_format, value = frames, visible=True), seed @spaces.GPU(duration=120) def animate_on_gpu( image: Image, seed: Optional[int] = 42, randomize_seed: bool = True, motion_bucket_id: int = 127, fps_id: int = 6, noise_aug_strength: float = 0.1, decoding_t: int = 3, frame_format: str = "webp", version: str = "auto" ): generator = torch.manual_seed(seed) if version == "svdxt" or (14 < fps_id and version != "svd"): return fps25Pipe(image, decode_chunk_size=decoding_t, generator=generator, motion_bucket_id=motion_bucket_id, noise_aug_strength=noise_aug_strength, num_frames=25).frames[0] else: return fps14Pipe(image, decode_chunk_size=decoding_t, generator=generator, motion_bucket_id=motion_bucket_id, noise_aug_strength=noise_aug_strength, num_frames=25).frames[0] def resize_image(image, output_size=(1024, 576)): # Calculate aspect ratios target_aspect = output_size[0] / output_size[1] # Aspect ratio of the desired size image_aspect = image.width / image.height # Aspect ratio of the original image # Do not touch the image if the size is good if image.width == output_size[0] and image.height == output_size[1]: return image # Resize if the original image is larger if image_aspect > target_aspect: # Resize the image to match the target height, maintaining aspect ratio new_height = output_size[1] new_width = int(new_height * image_aspect) resized_image = image.resize((new_width, new_height), Image.LANCZOS) # Calculate coordinates for cropping left = (new_width - output_size[0]) / 2 top = 0 right = (new_width + output_size[0]) / 2 bottom = output_size[1] else: # Resize the image to match the target width, maintaining aspect ratio new_width = output_size[0] new_height = int(new_width / image_aspect) resized_image = image.resize((new_width, new_height), Image.LANCZOS) # Calculate coordinates for cropping left = 0 top = (new_height - output_size[1]) / 2 right = output_size[0] bottom = (new_height + output_size[1]) / 2 # Crop the image cropped_image = resized_image.crop((left, top, right, bottom)) return cropped_image with gr.Blocks() as demo: gr.Markdown('''# Community demo for Stable Video Diffusion - Img2Vid - XT ([model](https://huggingface.co/stabilityai/stable-video-diffusion-img2vid-xt), [paper](https://stability.ai/research/stable-video-diffusion-scaling-latent-video-diffusion-models-to-large-datasets), [stability's ui waitlist](https://stability.ai/contact)) #### Research release ([_non-commercial_](https://huggingface.co/stabilityai/stable-video-diffusion-img2vid-xt/blob/main/LICENSE)): generate `4s` vid from a single image at (`25 frames` at `6 fps`). this demo uses [๐Ÿงจ diffusers for low VRAM and fast generation](https://huggingface.co/docs/diffusers/main/en/using-diffusers/svd). ''') with gr.Row(): with gr.Column(): image = gr.Image(label="Upload your image", type="pil") with gr.Accordion("Advanced options", open=False): fps_id = gr.Slider(label="Frames per second", info="The length of your video in seconds will be 25/fps", value=6, minimum=5, maximum=30) motion_bucket_id = gr.Slider(label="Motion bucket id", info="Controls how much motion to add/remove from the image", value=127, minimum=1, maximum=255) noise_aug_strength = gr.Slider(label="Noise strength", info="The noise to add", value=0.1, minimum=0, maximum=1, step=0.1) decoding_t = gr.Slider(label="Decoding", info="Number of frames decoded at a time; this eats more VRAM; reduce if necessary", value=3, minimum=1, maximum=5, step=1) frame_format = gr.Radio([["*.png", "png"], ["*.webp", "webp"], ["*.jpeg", "jpeg"], ["*.gif", "gif"], ["*.bmp", "bmp"]], label="Image format for result", info="File extention", value="webp", interactive=True) version = gr.Radio([["Auto", "auto"], ["๐Ÿƒ๐Ÿปโ€โ™€๏ธ SVD (trained on 14 f/s)", "svd"], ["๐Ÿƒ๐Ÿปโ€โ™€๏ธ๐Ÿ’จ SVD-XT (trained on 25 f/s)", "svdxt"]], label="Model", info="Trained model", value="auto", interactive=True) seed = gr.Slider(label="Seed", value=42, randomize=True, minimum=0, maximum=max_64_bit_int, step=1) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) generate_btn = gr.Button(value="๐Ÿš€ Animate", variant="primary") with gr.Column(): video = gr.Video(label="Generated video", autoplay=True) download_button = gr.DownloadButton(label="๐Ÿ’พ Download video", visible=False) gallery = gr.Gallery(label="Generated frames", visible=False) image.upload(fn=resize_image, inputs=image, outputs=image, queue=False) generate_btn.click(fn=animate, inputs=[image, seed, randomize_seed, motion_bucket_id, fps_id, noise_aug_strength, decoding_t, frame_format, version], outputs=[video, download_button, gallery, seed], api_name="video") gr.Examples( examples=[ ["Examples/Fire.webp", 42, True, 127, 25, 0.1, 3, "png", "auto"], ["Examples/Water.png", 42, True, 127, 25, 0.1, 3, "png", "auto"], ["Examples/Town.jpeg", 42, True, 127, 25, 0.1, 3, "png", "auto"] ], inputs=[image, seed, randomize_seed, motion_bucket_id, fps_id, noise_aug_strength, decoding_t, frame_format, version], outputs=[video, download_button, gallery, seed], fn=animate, run_on_click=True, cache_examples=False, ) if __name__ == "__main__": demo.launch(share=True, show_api=False)