File size: 45,685 Bytes
1e84a23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb97b2e
1e84a23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
948bcdd
eb97b2e
1e84a23
 
 
 
 
eb97b2e
1e84a23
 
 
4f44aaf
1e84a23
eb97b2e
 
 
 
 
 
 
 
1e84a23
 
 
 
 
eb97b2e
1e84a23
 
 
 
 
 
 
66d73e4
1e84a23
 
 
 
 
 
 
66d73e4
1e84a23
66d73e4
 
1e84a23
 
 
948bcdd
1e84a23
 
 
 
 
 
 
 
 
 
 
 
 
 
66d73e4
 
1e84a23
4f44aaf
 
1e84a23
 
 
 
 
5a79b5f
 
1e84a23
 
 
 
 
 
 
 
 
 
 
 
0362f10
1e84a23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f44aaf
b10609f
 
 
 
 
4f44aaf
 
 
 
 
 
 
 
b10609f
 
 
 
 
 
 
 
 
 
4f44aaf
1e84a23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
import glob
import math
import os
import random
import shutil
import subprocess
import time
from copy import copy
from pathlib import Path
from sys import platform

import cv2
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
import torch
import torch.nn as nn
import torchvision
from scipy.signal import butter, filtfilt
from tqdm import tqdm

from . import torch_utils, google_utils  #  torch_utils, google_utils

# Set printoptions
torch.set_printoptions(linewidth=320, precision=5, profile='long')
np.set_printoptions(linewidth=320, formatter={'float_kind': '{:11.5g}'.format})  # format short g, %precision=5
matplotlib.rc('font', **{'size': 11})

# Prevent OpenCV from multithreading (to use PyTorch DataLoader)
cv2.setNumThreads(0)


def init_seeds(seed=0):
    random.seed(seed)
    np.random.seed(seed)
    torch_utils.init_seeds(seed=seed)


def check_git_status():
    if platform in ['linux', 'darwin']:
        # Suggest 'git pull' if repo is out of date
        s = subprocess.check_output('if [ -d .git ]; then git fetch && git status -uno; fi', shell=True).decode('utf-8')
        if 'Your branch is behind' in s:
            print(s[s.find('Your branch is behind'):s.find('\n\n')] + '\n')


def make_divisible(x, divisor):
    # Returns x evenly divisble by divisor
    return math.ceil(x / divisor) * divisor


def labels_to_class_weights(labels, nc=80):
    # Get class weights (inverse frequency) from training labels
    if labels[0] is None:  # no labels loaded
        return torch.Tensor()

    labels = np.concatenate(labels, 0)  # labels.shape = (866643, 5) for COCO
    classes = labels[:, 0].astype(np.int)  # labels = [class xywh]
    weights = np.bincount(classes, minlength=nc)  # occurences per class

    # Prepend gridpoint count (for uCE trianing)
    # gpi = ((320 / 32 * np.array([1, 2, 4])) ** 2 * 3).sum()  # gridpoints per image
    # weights = np.hstack([gpi * len(labels)  - weights.sum() * 9, weights * 9]) ** 0.5  # prepend gridpoints to start

    weights[weights == 0] = 1  # replace empty bins with 1
    weights = 1 / weights  # number of targets per class
    weights /= weights.sum()  # normalize
    return torch.from_numpy(weights)


def labels_to_image_weights(labels, nc=80, class_weights=np.ones(80)):
    # Produces image weights based on class mAPs
    n = len(labels)
    class_counts = np.array([np.bincount(labels[i][:, 0].astype(np.int), minlength=nc) for i in range(n)])
    image_weights = (class_weights.reshape(1, nc) * class_counts).sum(1)
    # index = random.choices(range(n), weights=image_weights, k=1)  # weight image sample
    return image_weights


def coco80_to_coco91_class():  # converts 80-index (val2014) to 91-index (paper)
    # https://tech.amikelive.com/node-718/what-object-categories-labels-are-in-coco-dataset/
    # a = np.loadtxt('data/coco.names', dtype='str', delimiter='\n')
    # b = np.loadtxt('data/coco_paper.names', dtype='str', delimiter='\n')
    # x1 = [list(a[i] == b).index(True) + 1 for i in range(80)]  # darknet to coco
    # x2 = [list(b[i] == a).index(True) if any(b[i] == a) else None for i in range(91)]  # coco to darknet
    x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 31, 32, 33, 34,
         35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
         64, 65, 67, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90]
    return x


def xyxy2xywh(x):
    # Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h] where xy1=top-left, xy2=bottom-right
    y = torch.zeros_like(x) if isinstance(x, torch.Tensor) else np.zeros_like(x)
    y[:, 0] = (x[:, 0] + x[:, 2]) / 2  # x center
    y[:, 1] = (x[:, 1] + x[:, 3]) / 2  # y center
    y[:, 2] = x[:, 2] - x[:, 0]  # width
    y[:, 3] = x[:, 3] - x[:, 1]  # height
    return y


def xywh2xyxy(x):
    # Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
    y = torch.zeros_like(x) if isinstance(x, torch.Tensor) else np.zeros_like(x)
    y[:, 0] = x[:, 0] - x[:, 2] / 2  # top left x
    y[:, 1] = x[:, 1] - x[:, 3] / 2  # top left y
    y[:, 2] = x[:, 0] + x[:, 2] / 2  # bottom right x
    y[:, 3] = x[:, 1] + x[:, 3] / 2  # bottom right y
    return y


def scale_coords(img1_shape, coords, img0_shape, ratio_pad=None):
    # Rescale coords (xyxy) from img1_shape to img0_shape
    if ratio_pad is None:  # calculate from img0_shape
        gain = max(img1_shape) / max(img0_shape)  # gain  = old / new
        pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2  # wh padding
    else:
        gain = ratio_pad[0][0]
        pad = ratio_pad[1]

    coords[:, [0, 2]] -= pad[0]  # x padding
    coords[:, [1, 3]] -= pad[1]  # y padding
    coords[:, :4] /= gain
    clip_coords(coords, img0_shape)
    return coords


def clip_coords(boxes, img_shape):
    # Clip bounding xyxy bounding boxes to image shape (height, width)
    boxes[:, 0].clamp_(0, img_shape[1])  # x1
    boxes[:, 1].clamp_(0, img_shape[0])  # y1
    boxes[:, 2].clamp_(0, img_shape[1])  # x2
    boxes[:, 3].clamp_(0, img_shape[0])  # y2


def ap_per_class(tp, conf, pred_cls, target_cls):
    """ Compute the average precision, given the recall and precision curves.
    Source: https://github.com/rafaelpadilla/Object-Detection-Metrics.
    # Arguments
        tp:    True positives (nparray, nx1 or nx10).
        conf:  Objectness value from 0-1 (nparray).
        pred_cls: Predicted object classes (nparray).
        target_cls: True object classes (nparray).
    # Returns
        The average precision as computed in py-faster-rcnn.
    """

    # Sort by objectness
    i = np.argsort(-conf)
    tp, conf, pred_cls = tp[i], conf[i], pred_cls[i]

    # Find unique classes
    unique_classes = np.unique(target_cls)

    # Create Precision-Recall curve and compute AP for each class
    pr_score = 0.1  # score to evaluate P and R https://github.com/ultralytics/yolov3/issues/898
    s = [unique_classes.shape[0], tp.shape[1]]  # number class, number iou thresholds (i.e. 10 for mAP0.5...0.95)
    ap, p, r = np.zeros(s), np.zeros(s), np.zeros(s)
    for ci, c in enumerate(unique_classes):
        i = pred_cls == c
        n_gt = (target_cls == c).sum()  # Number of ground truth objects
        n_p = i.sum()  # Number of predicted objects

        if n_p == 0 or n_gt == 0:
            continue
        else:
            # Accumulate FPs and TPs
            fpc = (1 - tp[i]).cumsum(0)
            tpc = tp[i].cumsum(0)

            # Recall
            recall = tpc / (n_gt + 1e-16)  # recall curve
            r[ci] = np.interp(-pr_score, -conf[i], recall[:, 0])  # r at pr_score, negative x, xp because xp decreases

            # Precision
            precision = tpc / (tpc + fpc)  # precision curve
            p[ci] = np.interp(-pr_score, -conf[i], precision[:, 0])  # p at pr_score

            # AP from recall-precision curve
            for j in range(tp.shape[1]):
                ap[ci, j] = compute_ap(recall[:, j], precision[:, j])

            # Plot
            # fig, ax = plt.subplots(1, 1, figsize=(5, 5))
            # ax.plot(recall, precision)
            # ax.set_xlabel('Recall')
            # ax.set_ylabel('Precision')
            # ax.set_xlim(0, 1.01)
            # ax.set_ylim(0, 1.01)
            # fig.tight_layout()
            # fig.savefig('PR_curve.png', dpi=300)

    # Compute F1 score (harmonic mean of precision and recall)
    f1 = 2 * p * r / (p + r + 1e-16)

    return p, r, ap, f1, unique_classes.astype('int32')


def compute_ap(recall, precision):
    """ Compute the average precision, given the recall and precision curves.
    Source: https://github.com/rbgirshick/py-faster-rcnn.
    # Arguments
        recall:    The recall curve (list).
        precision: The precision curve (list).
    # Returns
        The average precision as computed in py-faster-rcnn.
    """

    # Append sentinel values to beginning and end
    mrec = np.concatenate(([0.], recall, [min(recall[-1] + 1E-3, 1.)]))
    mpre = np.concatenate(([0.], precision, [0.]))

    # Compute the precision envelope
    mpre = np.flip(np.maximum.accumulate(np.flip(mpre)))

    # Integrate area under curve
    method = 'interp'  # methods: 'continuous', 'interp'
    if method == 'interp':
        x = np.linspace(0, 1, 101)  # 101-point interp (COCO)
        ap = np.trapz(np.interp(x, mrec, mpre), x)  # integrate
    else:  # 'continuous'
        i = np.where(mrec[1:] != mrec[:-1])[0]  # points where x axis (recall) changes
        ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1])  # area under curve

    return ap


def bbox_iou(box1, box2, x1y1x2y2=True, GIoU=False, DIoU=False, CIoU=False):
    # Returns the IoU of box1 to box2. box1 is 4, box2 is nx4
    box2 = box2.t()

    # Get the coordinates of bounding boxes
    if x1y1x2y2:  # x1, y1, x2, y2 = box1
        b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3]
        b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3]
    else:  # transform from xywh to xyxy
        b1_x1, b1_x2 = box1[0] - box1[2] / 2, box1[0] + box1[2] / 2
        b1_y1, b1_y2 = box1[1] - box1[3] / 2, box1[1] + box1[3] / 2
        b2_x1, b2_x2 = box2[0] - box2[2] / 2, box2[0] + box2[2] / 2
        b2_y1, b2_y2 = box2[1] - box2[3] / 2, box2[1] + box2[3] / 2

    # Intersection area
    inter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \
            (torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0)

    # Union Area
    w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1
    w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1
    union = (w1 * h1 + 1e-16) + w2 * h2 - inter

    iou = inter / union  # iou
    if GIoU or DIoU or CIoU:
        cw = torch.max(b1_x2, b2_x2) - torch.min(b1_x1, b2_x1)  # convex (smallest enclosing box) width
        ch = torch.max(b1_y2, b2_y2) - torch.min(b1_y1, b2_y1)  # convex height
        if GIoU:  # Generalized IoU https://arxiv.org/pdf/1902.09630.pdf
            c_area = cw * ch + 1e-16  # convex area
            return iou - (c_area - union) / c_area  # GIoU
        if DIoU or CIoU:  # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1
            # convex diagonal squared
            c2 = cw ** 2 + ch ** 2 + 1e-16
            # centerpoint distance squared
            rho2 = ((b2_x1 + b2_x2) - (b1_x1 + b1_x2)) ** 2 / 4 + ((b2_y1 + b2_y2) - (b1_y1 + b1_y2)) ** 2 / 4
            if DIoU:
                return iou - rho2 / c2  # DIoU
            elif CIoU:  # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47
                v = (4 / math.pi ** 2) * torch.pow(torch.atan(w2 / h2) - torch.atan(w1 / h1), 2)
                with torch.no_grad():
                    alpha = v / (1 - iou + v)
                return iou - (rho2 / c2 + v * alpha)  # CIoU

    return iou


def box_iou(box1, box2):
    # https://github.com/pytorch/vision/blob/master/torchvision/ops/boxes.py
    """
    Return intersection-over-union (Jaccard index) of boxes.
    Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
    Arguments:
        box1 (Tensor[N, 4])
        box2 (Tensor[M, 4])
    Returns:
        iou (Tensor[N, M]): the NxM matrix containing the pairwise
            IoU values for every element in boxes1 and boxes2
    """

    def box_area(box):
        # box = 4xn
        return (box[2] - box[0]) * (box[3] - box[1])

    area1 = box_area(box1.t())
    area2 = box_area(box2.t())

    # inter(N,M) = (rb(N,M,2) - lt(N,M,2)).clamp(0).prod(2)
    inter = (torch.min(box1[:, None, 2:], box2[:, 2:]) - torch.max(box1[:, None, :2], box2[:, :2])).clamp(0).prod(2)
    return inter / (area1[:, None] + area2 - inter)  # iou = inter / (area1 + area2 - inter)


def wh_iou(wh1, wh2):
    # Returns the nxm IoU matrix. wh1 is nx2, wh2 is mx2
    wh1 = wh1[:, None]  # [N,1,2]
    wh2 = wh2[None]  # [1,M,2]
    inter = torch.min(wh1, wh2).prod(2)  # [N,M]
    return inter / (wh1.prod(2) + wh2.prod(2) - inter)  # iou = inter / (area1 + area2 - inter)


class FocalLoss(nn.Module):
    # Wraps focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5)
    def __init__(self, loss_fcn, gamma=1.5, alpha=0.25):
        super(FocalLoss, self).__init__()
        self.loss_fcn = loss_fcn  # must be nn.BCEWithLogitsLoss()
        self.gamma = gamma
        self.alpha = alpha
        self.reduction = loss_fcn.reduction
        self.loss_fcn.reduction = 'none'  # required to apply FL to each element

    def forward(self, pred, true):
        loss = self.loss_fcn(pred, true)
        # p_t = torch.exp(-loss)
        # loss *= self.alpha * (1.000001 - p_t) ** self.gamma  # non-zero power for gradient stability

        # TF implementation https://github.com/tensorflow/addons/blob/v0.7.1/tensorflow_addons/losses/focal_loss.py
        pred_prob = torch.sigmoid(pred)  # prob from logits
        p_t = true * pred_prob + (1 - true) * (1 - pred_prob)
        alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha)
        modulating_factor = (1.0 - p_t) ** self.gamma
        loss *= alpha_factor * modulating_factor

        if self.reduction == 'mean':
            return loss.mean()
        elif self.reduction == 'sum':
            return loss.sum()
        else:  # 'none'
            return loss


def smooth_BCE(eps=0.1):  # https://github.com/ultralytics/yolov3/issues/238#issuecomment-598028441
    # return positive, negative label smoothing BCE targets
    return 1.0 - 0.5 * eps, 0.5 * eps


def compute_loss(p, targets, model):  # predictions, targets, model
    ft = torch.cuda.FloatTensor if p[0].is_cuda else torch.Tensor
    lcls, lbox, lobj = ft([0]), ft([0]), ft([0])
    tcls, tbox, indices, anchors = build_targets(p, targets, model)  # targets
    h = model.hyp  # hyperparameters
    red = 'mean'  # Loss reduction (sum or mean)

    # Define criteria
    BCEcls = nn.BCEWithLogitsLoss(pos_weight=ft([h['cls_pw']]), reduction=red)
    BCEobj = nn.BCEWithLogitsLoss(pos_weight=ft([h['obj_pw']]), reduction=red)

    # class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3
    cp, cn = smooth_BCE(eps=0.0)

    # focal loss
    g = h['fl_gamma']  # focal loss gamma
    if g > 0:
        BCEcls, BCEobj = FocalLoss(BCEcls, g), FocalLoss(BCEobj, g)

    # per output
    nt = 0  # targets
    for i, pi in enumerate(p):  # layer index, layer predictions
        b, a, gj, gi = indices[i]  # image, anchor, gridy, gridx
        tobj = torch.zeros_like(pi[..., 0])  # target obj

        nb = b.shape[0]  # number of targets
        if nb:
            nt += nb  # cumulative targets
            ps = pi[b, a, gj, gi]  # prediction subset corresponding to targets

            # GIoU
            pxy = ps[:, :2].sigmoid() * 2. - 0.5
            pwh = (ps[:, 2:4].sigmoid() * 2) ** 2 * anchors[i]
            pbox = torch.cat((pxy, pwh), 1)  # predicted box
            giou = bbox_iou(pbox.t(), tbox[i], x1y1x2y2=False, GIoU=True)  # giou(prediction, target)
            lbox += (1.0 - giou).sum() if red == 'sum' else (1.0 - giou).mean()  # giou loss

            # Obj
            tobj[b, a, gj, gi] = (1.0 - model.gr) + model.gr * giou.detach().clamp(0).type(tobj.dtype)  # giou ratio

            # Class
            if model.nc > 1:  # cls loss (only if multiple classes)
                t = torch.full_like(ps[:, 5:], cn)  # targets
                t[range(nb), tcls[i]] = cp
                lcls += BCEcls(ps[:, 5:], t)  # BCE

            # Append targets to text file
            # with open('targets.txt', 'a') as file:
            #     [file.write('%11.5g ' * 4 % tuple(x) + '\n') for x in torch.cat((txy[i], twh[i]), 1)]

        lobj += BCEobj(pi[..., 4], tobj)  # obj loss

    lbox *= h['giou']
    lobj *= h['obj']
    lcls *= h['cls']
    bs = tobj.shape[0]  # batch size
    if red == 'sum':
        g = 3.0  # loss gain
        lobj *= g / bs
        if nt:
            lcls *= g / nt / model.nc
            lbox *= g / nt

    loss = lbox + lobj + lcls
    return loss * bs, torch.cat((lbox, lobj, lcls, loss)).detach()


def build_targets(p, targets, model):
    # Build targets for compute_loss(), input targets(image,class,x,y,w,h)
    det = model.module.model[-1] if type(model) in (nn.parallel.DataParallel, nn.parallel.DistributedDataParallel) \
        else model.model[-1]  # Detect() module
    na, nt = det.na, targets.shape[0]  # number of anchors, targets
    tcls, tbox, indices, anch = [], [], [], []
    gain = torch.ones(6, device=targets.device)  # normalized to gridspace gain
    off = torch.tensor([[1, 0], [0, 1], [-1, 0], [0, -1]], device=targets.device).float()  # overlap offsets
    at = torch.arange(na).view(na, 1).repeat(1, nt)  # anchor tensor, same as .repeat_interleave(nt)

    style = 'rect4'
    for i in range(det.nl):
        anchors = det.anchors[i]
        gain[2:] = torch.tensor(p[i].shape)[[3, 2, 3, 2]]  # xyxy gain

        # Match targets to anchors
        a, t, offsets = [], targets * gain, 0
        if nt:
            r = t[None, :, 4:6] / anchors[:, None]  # wh ratio
            j = torch.max(r, 1. / r).max(2)[0] < model.hyp['anchor_t']  # compare
            # j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t']  # iou(3,n) = wh_iou(anchors(3,2), gwh(n,2))
            a, t = at[j], t.repeat(na, 1, 1)[j]  # filter

            # overlaps
            gxy = t[:, 2:4]  # grid xy
            z = torch.zeros_like(gxy)
            if style == 'rect2':
                g = 0.2  # offset
                j, k = ((gxy % 1. < g) & (gxy > 1.)).T
                a, t = torch.cat((a, a[j], a[k]), 0), torch.cat((t, t[j], t[k]), 0)
                offsets = torch.cat((z, z[j] + off[0], z[k] + off[1]), 0) * g

            elif style == 'rect4':
                g = 0.5  # offset
                j, k = ((gxy % 1. < g) & (gxy > 1.)).T
                l, m = ((gxy % 1. > (1 - g)) & (gxy < (gain[[2, 3]] - 1.))).T
                a, t = torch.cat((a, a[j], a[k], a[l], a[m]), 0), torch.cat((t, t[j], t[k], t[l], t[m]), 0)
                offsets = torch.cat((z, z[j] + off[0], z[k] + off[1], z[l] + off[2], z[m] + off[3]), 0) * g

        # Define
        b, c = t[:, :2].long().T  # image, class
        gxy = t[:, 2:4]  # grid xy
        gwh = t[:, 4:6]  # grid wh
        gij = (gxy - offsets).long()
        gi, gj = gij.T  # grid xy indices

        # Append
        indices.append((b, a, gj, gi))  # image, anchor, grid indices
        tbox.append(torch.cat((gxy - gij, gwh), 1))  # box
        anch.append(anchors[a])  # anchors
        tcls.append(c)  # class

    return tcls, tbox, indices, anch


def non_max_suppression(prediction, conf_thres=0.1, iou_thres=0.6, fast=False, classes=None, agnostic=False):
    """
    Performs  Non-Maximum Suppression on inference results
    Returns detections with shape:
        nx6 (x1, y1, x2, y2, conf, cls)
    """
    nc = prediction[0].shape[1] - 5  # number of classes

    # Settings
    min_wh, max_wh = 2, 4096  # (pixels) minimum and maximum box width and height
    max_det = 300  # maximum number of detections per image
    time_limit = 10.0  # seconds to quit after
    redundant = True  # require redundant detections
    fast |= conf_thres > 0.001  # fast mode
    if fast:
        merge = False
        multi_label = False
    else:
        merge = True  # merge for best mAP (adds 0.5ms/img)
        multi_label = nc > 1  # multiple labels per box (adds 0.5ms/img)

    t = time.time()
    output = [None] * prediction.shape[0]
    for xi, x in enumerate(prediction):  # image index, image inference
        # Apply constraints
        # x[((x[..., 2:4] < min_wh) | (x[..., 2:4] > max_wh)).any(1), 4] = 0  # width-height
        x = x[x[:, 4] > conf_thres]  # confidence

        # If none remain process next image
        if not x.shape[0]:
            continue

        # Compute conf
        x[:, 5:] *= x[:, 4:5]  # conf = obj_conf * cls_conf

        # Box (center x, center y, width, height) to (x1, y1, x2, y2)
        box = xywh2xyxy(x[:, :4])

        # Detections matrix nx6 (xyxy, conf, cls)
        if multi_label:
            i, j = (x[:, 5:] > conf_thres).nonzero().t()
            x = torch.cat((box[i], x[i, j + 5, None], j[:, None].float()), 1)
        else:  # best class only
            conf, j = x[:, 5:].max(1, keepdim=True)
            x = torch.cat((box, conf, j.float()), 1)[conf.view(-1) > conf_thres]

        # Filter by class
        if classes:
            x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)]

        # Apply finite constraint
        # if not torch.isfinite(x).all():
        #     x = x[torch.isfinite(x).all(1)]

        # If none remain process next image
        n = x.shape[0]  # number of boxes
        if not n:
            continue

        # Sort by confidence
        # x = x[x[:, 4].argsort(descending=True)]

        # Batched NMS
        c = x[:, 5:6] * (0 if agnostic else max_wh)  # classes
        boxes, scores = x[:, :4] + c, x[:, 4]  # boxes (offset by class), scores
        i = torchvision.ops.boxes.nms(boxes, scores, iou_thres)
        if i.shape[0] > max_det:  # limit detections
            i = i[:max_det]
        if merge and (1 < n < 3E3):  # Merge NMS (boxes merged using weighted mean)
            try:  # update boxes as boxes(i,4) = weights(i,n) * boxes(n,4)
                iou = box_iou(boxes[i], boxes) > iou_thres  # iou matrix
                weights = iou * scores[None]  # box weights
                x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True)  # merged boxes
                if redundant:
                    i = i[iou.sum(1) > 1]  # require redundancy
            except:  # possible CUDA error https://github.com/ultralytics/yolov3/issues/1139
                print(x, i, x.shape, i.shape)
                pass

        output[xi] = x[i]
        if (time.time() - t) > time_limit:
            break  # time limit exceeded

    return output


def strip_optimizer(f='weights/best.pt'):  # from utils.utils import *; strip_optimizer()
    # Strip optimizer from *.pt files for lighter files (reduced by 1/2 size)
    x = torch.load(f, map_location=torch.device('cpu'))
    x['optimizer'] = None
    torch.save(x, f)
    print('Optimizer stripped from %s' % f)


def create_backbone(f='weights/best.pt', s='weights/backbone.pt'):  # from utils.utils import *; create_backbone()
    # create backbone 's' from 'f'
    x = torch.load(f, map_location=torch.device('cpu'))
    x['optimizer'] = None
    x['training_results'] = None
    x['epoch'] = -1
    for p in x['model'].parameters():
        p.requires_grad = True
    torch.save(x, s)
    print('%s modified for backbone use and saved as %s' % (f, s))


def coco_class_count(path='../coco/labels/train2014/'):
    # Histogram of occurrences per class
    nc = 80  # number classes
    x = np.zeros(nc, dtype='int32')
    files = sorted(glob.glob('%s/*.*' % path))
    for i, file in enumerate(files):
        labels = np.loadtxt(file, dtype=np.float32).reshape(-1, 5)
        x += np.bincount(labels[:, 0].astype('int32'), minlength=nc)
        print(i, len(files))


def coco_only_people(path='../coco/labels/train2017/'):  # from utils.utils import *; coco_only_people()
    # Find images with only people
    files = sorted(glob.glob('%s/*.*' % path))
    for i, file in enumerate(files):
        labels = np.loadtxt(file, dtype=np.float32).reshape(-1, 5)
        if all(labels[:, 0] == 0):
            print(labels.shape[0], file)


def crop_images_random(path='../images/', scale=0.50):  # from utils.utils import *; crop_images_random()
    # crops images into random squares up to scale fraction
    # WARNING: overwrites images!
    for file in tqdm(sorted(glob.glob('%s/*.*' % path))):
        img = cv2.imread(file)  # BGR
        if img is not None:
            h, w = img.shape[:2]

            # create random mask
            a = 30  # minimum size (pixels)
            mask_h = random.randint(a, int(max(a, h * scale)))  # mask height
            mask_w = mask_h  # mask width

            # box
            xmin = max(0, random.randint(0, w) - mask_w // 2)
            ymin = max(0, random.randint(0, h) - mask_h // 2)
            xmax = min(w, xmin + mask_w)
            ymax = min(h, ymin + mask_h)

            # apply random color mask
            cv2.imwrite(file, img[ymin:ymax, xmin:xmax])


def coco_single_class_labels(path='../coco/labels/train2014/', label_class=43):
    # Makes single-class coco datasets. from utils.utils import *; coco_single_class_labels()
    if os.path.exists('new/'):
        shutil.rmtree('new/')  # delete output folder
    os.makedirs('new/')  # make new output folder
    os.makedirs('new/labels/')
    os.makedirs('new/images/')
    for file in tqdm(sorted(glob.glob('%s/*.*' % path))):
        with open(file, 'r') as f:
            labels = np.array([x.split() for x in f.read().splitlines()], dtype=np.float32)
        i = labels[:, 0] == label_class
        if any(i):
            img_file = file.replace('labels', 'images').replace('txt', 'jpg')
            labels[:, 0] = 0  # reset class to 0
            with open('new/images.txt', 'a') as f:  # add image to dataset list
                f.write(img_file + '\n')
            with open('new/labels/' + Path(file).name, 'a') as f:  # write label
                for l in labels[i]:
                    f.write('%g %.6f %.6f %.6f %.6f\n' % tuple(l))
            shutil.copyfile(src=img_file, dst='new/images/' + Path(file).name.replace('txt', 'jpg'))  # copy images


def kmean_anchors(path='./data/coco128.txt', n=9, img_size=(640, 640), thr=0.20, gen=1000):
    # Creates kmeans anchors for use in *.cfg files: from utils.utils import *; _ = kmean_anchors()
    # n: number of anchors
    # img_size: (min, max) image size used for multi-scale training (can be same values)
    # thr: IoU threshold hyperparameter used for training (0.0 - 1.0)
    # gen: generations to evolve anchors using genetic algorithm
    from utils.datasets import LoadImagesAndLabels

    def print_results(k):
        k = k[np.argsort(k.prod(1))]  # sort small to large
        iou = wh_iou(wh, torch.Tensor(k))
        max_iou = iou.max(1)[0]
        bpr, aat = (max_iou > thr).float().mean(), (iou > thr).float().mean() * n  # best possible recall, anch > thr

        # thr = 5.0
        # r = wh[:, None] / k[None]
        # ar = torch.max(r, 1. / r).max(2)[0]
        # max_ar = ar.min(1)[0]
        # bpr, aat = (max_ar < thr).float().mean(), (ar < thr).float().mean() * n  # best possible recall, anch > thr

        print('%.2f iou_thr: %.3f best possible recall, %.2f anchors > thr' % (thr, bpr, aat))
        print('n=%g, img_size=%s, IoU_all=%.3f/%.3f-mean/best, IoU>thr=%.3f-mean: ' %
              (n, img_size, iou.mean(), max_iou.mean(), iou[iou > thr].mean()), end='')
        for i, x in enumerate(k):
            print('%i,%i' % (round(x[0]), round(x[1])), end=',  ' if i < len(k) - 1 else '\n')  # use in *.cfg
        return k

    def fitness(k):  # mutation fitness
        iou = wh_iou(wh, torch.Tensor(k))  # iou
        max_iou = iou.max(1)[0]
        return (max_iou * (max_iou > thr).float()).mean()  # product

    # def fitness_ratio(k):  # mutation fitness
    #     # wh(5316,2), k(9,2)
    #     r = wh[:, None] / k[None]
    #     x = torch.max(r, 1. / r).max(2)[0]
    #     m = x.min(1)[0]
    #     return 1. / (m * (m < 5).float()).mean()  # product

    # Get label wh
    wh = []
    dataset = LoadImagesAndLabels(path, augment=True, rect=True)
    nr = 1 if img_size[0] == img_size[1] else 3  # number augmentation repetitions
    for s, l in zip(dataset.shapes, dataset.labels):
        # wh.append(l[:, 3:5] * (s / s.max()))  # image normalized to letterbox normalized wh
        wh.append(l[:, 3:5] * s)  # image normalized to pixels
    wh = np.concatenate(wh, 0).repeat(nr, axis=0)  # augment 3x
    # wh *= np.random.uniform(img_size[0], img_size[1], size=(wh.shape[0], 1))  # normalized to pixels (multi-scale)
    wh = wh[(wh > 2.0).all(1)]  # remove below threshold boxes (< 2 pixels wh)

    # Kmeans calculation
    from scipy.cluster.vq import kmeans
    print('Running kmeans for %g anchors on %g points...' % (n, len(wh)))
    s = wh.std(0)  # sigmas for whitening
    k, dist = kmeans(wh / s, n, iter=30)  # points, mean distance
    k *= s
    wh = torch.Tensor(wh)
    k = print_results(k)

    # # Plot
    # k, d = [None] * 20, [None] * 20
    # for i in tqdm(range(1, 21)):
    #     k[i-1], d[i-1] = kmeans(wh / s, i)  # points, mean distance
    # fig, ax = plt.subplots(1, 2, figsize=(14, 7))
    # ax = ax.ravel()
    # ax[0].plot(np.arange(1, 21), np.array(d) ** 2, marker='.')
    # fig, ax = plt.subplots(1, 2, figsize=(14, 7))  # plot wh
    # ax[0].hist(wh[wh[:, 0]<100, 0],400)
    # ax[1].hist(wh[wh[:, 1]<100, 1],400)
    # fig.tight_layout()
    # fig.savefig('wh.png', dpi=200)

    # Evolve
    npr = np.random
    f, sh, mp, s = fitness(k), k.shape, 0.9, 0.1  # fitness, generations, mutation prob, sigma
    for _ in tqdm(range(gen), desc='Evolving anchors'):
        v = np.ones(sh)
        while (v == 1).all():  # mutate until a change occurs (prevent duplicates)
            v = ((npr.random(sh) < mp) * npr.random() * npr.randn(*sh) * s + 1).clip(0.3, 3.0)
        kg = (k.copy() * v).clip(min=2.0)
        fg = fitness(kg)
        if fg > f:
            f, k = fg, kg.copy()
            print_results(k)
    k = print_results(k)

    return k


def print_mutation(hyp, results, bucket=''):
    # Print mutation results to evolve.txt (for use with train.py --evolve)
    a = '%10s' * len(hyp) % tuple(hyp.keys())  # hyperparam keys
    b = '%10.3g' * len(hyp) % tuple(hyp.values())  # hyperparam values
    c = '%10.4g' * len(results) % results  # results (P, R, mAP, F1, test_loss)
    print('\n%s\n%s\nEvolved fitness: %s\n' % (a, b, c))

    if bucket:
        os.system('gsutil cp gs://%s/evolve.txt .' % bucket)  # download evolve.txt

    with open('evolve.txt', 'a') as f:  # append result
        f.write(c + b + '\n')
    x = np.unique(np.loadtxt('evolve.txt', ndmin=2), axis=0)  # load unique rows
    np.savetxt('evolve.txt', x[np.argsort(-fitness(x))], '%10.3g')  # save sort by fitness

    if bucket:
        os.system('gsutil cp evolve.txt gs://%s' % bucket)  # upload evolve.txt


def apply_classifier(x, model, img, im0):
    # applies a second stage classifier to yolo outputs
    im0 = [im0] if isinstance(im0, np.ndarray) else im0
    for i, d in enumerate(x):  # per image
        if d is not None and len(d):
            d = d.clone()

            # Reshape and pad cutouts
            b = xyxy2xywh(d[:, :4])  # boxes
            b[:, 2:] = b[:, 2:].max(1)[0].unsqueeze(1)  # rectangle to square
            b[:, 2:] = b[:, 2:] * 1.3 + 30  # pad
            d[:, :4] = xywh2xyxy(b).long()

            # Rescale boxes from img_size to im0 size
            scale_coords(img.shape[2:], d[:, :4], im0[i].shape)

            # Classes
            pred_cls1 = d[:, 5].long()
            ims = []
            for j, a in enumerate(d):  # per item
                cutout = im0[i][int(a[1]):int(a[3]), int(a[0]):int(a[2])]
                im = cv2.resize(cutout, (224, 224))  # BGR
                # cv2.imwrite('test%i.jpg' % j, cutout)

                im = im[:, :, ::-1].transpose(2, 0, 1)  # BGR to RGB, to 3x416x416
                im = np.ascontiguousarray(im, dtype=np.float32)  # uint8 to float32
                im /= 255.0  # 0 - 255 to 0.0 - 1.0
                ims.append(im)

            pred_cls2 = model(torch.Tensor(ims).to(d.device)).argmax(1)  # classifier prediction
            x[i] = x[i][pred_cls1 == pred_cls2]  # retain matching class detections

    return x


def fitness(x):
    # Returns fitness (for use with results.txt or evolve.txt)
    w = [0.0, 0.0, 0.1, 0.9]  # weights for [P, R, [email protected], [email protected]:0.95]
    return (x[:, :4] * w).sum(1)


def output_to_target(output, width, height):
    """
    Convert a YOLO model output to target format
    [batch_id, class_id, x, y, w, h, conf]
    """
    if isinstance(output, torch.Tensor):
        output = output.cpu().numpy()

    targets = []
    for i, o in enumerate(output):
        if o is not None:
            for pred in o:
                box = pred[:4]
                w = (box[2] - box[0]) / width
                h = (box[3] - box[1]) / height
                x = box[0] / width + w / 2
                y = box[1] / height + h / 2
                conf = pred[4]
                cls = int(pred[5])

                targets.append([i, cls, x, y, w, h, conf])

    return np.array(targets)


# Plotting functions ---------------------------------------------------------------------------------------------------
def butter_lowpass_filtfilt(data, cutoff=1500, fs=50000, order=5):
    # https://stackoverflow.com/questions/28536191/how-to-filter-smooth-with-scipy-numpy
    def butter_lowpass(cutoff, fs, order):
        nyq = 0.5 * fs
        normal_cutoff = cutoff / nyq
        b, a = butter(order, normal_cutoff, btype='low', analog=False)
        return b, a

    b, a = butter_lowpass(cutoff, fs, order=order)
    return filtfilt(b, a, data)  # forward-backward filter


def plot_one_box(x, img, color=None, label=None, line_thickness=None):
    # Plots one bounding box on image img
    tl = line_thickness or round(0.002 * (img.shape[0] + img.shape[1]) / 2) + 1  # line/font thickness
    color = color or [random.randint(0, 255) for _ in range(3)]
    c1, c2 = (int(x[0]), int(x[1])), (int(x[2]), int(x[3]))
    cv2.rectangle(img, c1, c2, color, thickness=tl, lineType=cv2.LINE_AA)
    if label:
        tf = max(tl - 1, 1)  # font thickness
        t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0]
        c2 = c1[0] + t_size[0], c1[1] - t_size[1] - 3
        cv2.rectangle(img, c1, c2, color, -1, cv2.LINE_AA)  # filled
        cv2.putText(img, label, (c1[0], c1[1] - 2), 0, tl / 3, [225, 255, 255], thickness=tf, lineType=cv2.LINE_AA)


def plot_wh_methods():  # from utils.utils import *; plot_wh_methods()
    # Compares the two methods for width-height anchor multiplication
    # https://github.com/ultralytics/yolov3/issues/168
    x = np.arange(-4.0, 4.0, .1)
    ya = np.exp(x)
    yb = torch.sigmoid(torch.from_numpy(x)).numpy() * 2

    fig = plt.figure(figsize=(6, 3), dpi=150)
    plt.plot(x, ya, '.-', label='yolo method')
    plt.plot(x, yb ** 2, '.-', label='^2 power method')
    plt.plot(x, yb ** 2.5, '.-', label='^2.5 power method')
    plt.xlim(left=-4, right=4)
    plt.ylim(bottom=0, top=6)
    plt.xlabel('input')
    plt.ylabel('output')
    plt.legend()
    fig.tight_layout()
    fig.savefig('comparison.png', dpi=200)


def plot_images(images, targets, paths=None, fname='images.jpg', names=None, max_size=640, max_subplots=16):
    tl = 3  # line thickness
    tf = max(tl - 1, 1)  # font thickness
    if os.path.isfile(fname):  # do not overwrite
        return None

    if isinstance(images, torch.Tensor):
        images = images.cpu().numpy()

    if isinstance(targets, torch.Tensor):
        targets = targets.cpu().numpy()

    # un-normalise
    if np.max(images[0]) <= 1:
        images *= 255

    bs, _, h, w = images.shape  # batch size, _, height, width
    bs = min(bs, max_subplots)  # limit plot images
    ns = np.ceil(bs ** 0.5)  # number of subplots (square)

    # Check if we should resize
    scale_factor = max_size / max(h, w)
    if scale_factor < 1:
        h = math.ceil(scale_factor * h)
        w = math.ceil(scale_factor * w)

    # Empty array for output
    mosaic = np.full((int(ns * h), int(ns * w), 3), 255, dtype=np.uint8)

    # Fix class - colour map
    prop_cycle = plt.rcParams['axes.prop_cycle']
    # https://stackoverflow.com/questions/51350872/python-from-color-name-to-rgb
    hex2rgb = lambda h: tuple(int(h[1 + i:1 + i + 2], 16) for i in (0, 2, 4))
    color_lut = [hex2rgb(h) for h in prop_cycle.by_key()['color']]

    for i, img in enumerate(images):
        if i == max_subplots:  # if last batch has fewer images than we expect
            break

        block_x = int(w * (i // ns))
        block_y = int(h * (i % ns))

        img = img.transpose(1, 2, 0)
        if scale_factor < 1:
            img = cv2.resize(img, (w, h))

        mosaic[block_y:block_y + h, block_x:block_x + w, :] = img
        if len(targets) > 0:
            image_targets = targets[targets[:, 0] == i]
            boxes = xywh2xyxy(image_targets[:, 2:6]).T
            classes = image_targets[:, 1].astype('int')
            gt = image_targets.shape[1] == 6  # ground truth if no conf column
            conf = None if gt else image_targets[:, 6]  # check for confidence presence (gt vs pred)

            boxes[[0, 2]] *= w
            boxes[[0, 2]] += block_x
            boxes[[1, 3]] *= h
            boxes[[1, 3]] += block_y
            for j, box in enumerate(boxes.T):
                cls = int(classes[j])
                color = color_lut[cls % len(color_lut)]
                cls = names[cls] if names else cls
                if gt or conf[j] > 0.3:  # 0.3 conf thresh
                    label = '%s' % cls if gt else '%s %.1f' % (cls, conf[j])
                    plot_one_box(box, mosaic, label=label, color=color, line_thickness=tl)

        # Draw image filename labels
        if paths is not None:
            label = os.path.basename(paths[i])[:40]  # trim to 40 char
            t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0]
            cv2.putText(mosaic, label, (block_x + 5, block_y + t_size[1] + 5), 0, tl / 3, [220, 220, 220], thickness=tf,
                        lineType=cv2.LINE_AA)

        # Image border
        cv2.rectangle(mosaic, (block_x, block_y), (block_x + w, block_y + h), (255, 255, 255), thickness=3)

    if fname is not None:
        mosaic = cv2.resize(mosaic, (int(ns * w * 0.5), int(ns * h * 0.5)), interpolation=cv2.INTER_AREA)
        cv2.imwrite(fname, cv2.cvtColor(mosaic, cv2.COLOR_BGR2RGB))

    return mosaic


def plot_lr_scheduler(optimizer, scheduler, epochs=300):
    # Plot LR simulating training for full epochs
    optimizer, scheduler = copy(optimizer), copy(scheduler)  # do not modify originals
    y = []
    for _ in range(epochs):
        scheduler.step()
        y.append(optimizer.param_groups[0]['lr'])
    plt.plot(y, '.-', label='LR')
    plt.xlabel('epoch')
    plt.ylabel('LR')
    plt.grid()
    plt.xlim(0, epochs)
    plt.ylim(0)
    plt.tight_layout()
    plt.savefig('LR.png', dpi=200)


def plot_test_txt():  # from utils.utils import *; plot_test()
    # Plot test.txt histograms
    x = np.loadtxt('test.txt', dtype=np.float32)
    box = xyxy2xywh(x[:, :4])
    cx, cy = box[:, 0], box[:, 1]

    fig, ax = plt.subplots(1, 1, figsize=(6, 6), tight_layout=True)
    ax.hist2d(cx, cy, bins=600, cmax=10, cmin=0)
    ax.set_aspect('equal')
    plt.savefig('hist2d.png', dpi=300)

    fig, ax = plt.subplots(1, 2, figsize=(12, 6), tight_layout=True)
    ax[0].hist(cx, bins=600)
    ax[1].hist(cy, bins=600)
    plt.savefig('hist1d.png', dpi=200)


def plot_targets_txt():  # from utils.utils import *; plot_targets_txt()
    # Plot targets.txt histograms
    x = np.loadtxt('targets.txt', dtype=np.float32).T
    s = ['x targets', 'y targets', 'width targets', 'height targets']
    fig, ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True)
    ax = ax.ravel()
    for i in range(4):
        ax[i].hist(x[i], bins=100, label='%.3g +/- %.3g' % (x[i].mean(), x[i].std()))
        ax[i].legend()
        ax[i].set_title(s[i])
    plt.savefig('targets.jpg', dpi=200)


def plot_study_txt(f='study.txt', x=None):  # from utils.utils import *; plot_study_txt()
    # Plot study.txt generated by test.py
    fig, ax = plt.subplots(2, 4, figsize=(10, 6), tight_layout=True)
    ax = ax.ravel()

    fig2, ax2 = plt.subplots(1, 1, figsize=(8, 4), tight_layout=True)
    ax2.plot(1E3 / np.array([209, 140, 97, 58, 35, 18][:-1]), [33.5, 39.1, 42.5, 45.9, 49., 50.5][:-1],
             '.-', linewidth=2, markersize=8, alpha=0.3, label='EfficientDet')

    for f in sorted(glob.glob('study*.txt')):
        y = np.loadtxt(f, dtype=np.float32, usecols=[0, 1, 2, 3, 7, 8, 9], ndmin=2).T
        x = np.arange(y.shape[1]) if x is None else np.array(x)
        s = ['P', 'R', '[email protected]', '[email protected]:.95', 't_inference (ms/img)', 't_NMS (ms/img)', 't_total (ms/img)']
        for i in range(7):
            ax[i].plot(x, y[i], '.-', linewidth=2, markersize=8)
            ax[i].set_title(s[i])

        j = y[3].argmax() + 1
        ax2.plot(y[6, :j], y[3, :j] * 1E2, '.-', linewidth=2, markersize=8,
                 label=Path(f).stem.replace('study_coco_', '').replace('yolo', 'YOLO'))

    ax2.set_xlim(0)
    ax2.set_ylim(23, 50)
    ax2.set_xlabel('GPU Latency (ms)')
    ax2.set_ylabel('COCO AP val')
    ax2.legend(loc='lower right')
    ax2.grid()
    plt.savefig('study_mAP_latency.png', dpi=300)
    plt.savefig(f.replace('.txt', '.png'), dpi=200)


def plot_labels(labels):
    # plot dataset labels
    c, b = labels[:, 0], labels[:, 1:].transpose()  # classees, boxes

    def hist2d(x, y, n=100):
        xedges, yedges = np.linspace(x.min(), x.max(), n), np.linspace(y.min(), y.max(), n)
        hist, xedges, yedges = np.histogram2d(x, y, (xedges, yedges))
        xidx = np.clip(np.digitize(x, xedges) - 1, 0, hist.shape[0] - 1)
        yidx = np.clip(np.digitize(y, yedges) - 1, 0, hist.shape[1] - 1)
        return np.log(hist[xidx, yidx])

    fig, ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True)
    ax = ax.ravel()
    ax[0].hist(c, bins=int(c.max() + 1))
    ax[0].set_xlabel('classes')
    ax[1].scatter(b[0], b[1], c=hist2d(b[0], b[1], 90), cmap='jet')
    ax[1].set_xlabel('x')
    ax[1].set_ylabel('y')
    ax[2].scatter(b[2], b[3], c=hist2d(b[2], b[3], 90), cmap='jet')
    ax[2].set_xlabel('width')
    ax[2].set_ylabel('height')
    plt.savefig('labels.png', dpi=200)


def plot_evolution_results(hyp):  # from utils.utils import *; plot_evolution_results(hyp)
    # Plot hyperparameter evolution results in evolve.txt
    x = np.loadtxt('evolve.txt', ndmin=2)
    f = fitness(x)
    # weights = (f - f.min()) ** 2  # for weighted results
    plt.figure(figsize=(12, 10), tight_layout=True)
    matplotlib.rc('font', **{'size': 8})
    for i, (k, v) in enumerate(hyp.items()):
        y = x[:, i + 7]
        # mu = (y * weights).sum() / weights.sum()  # best weighted result
        mu = y[f.argmax()]  # best single result
        plt.subplot(4, 5, i + 1)
        plt.plot(mu, f.max(), 'o', markersize=10)
        plt.plot(y, f, '.')
        plt.title('%s = %.3g' % (k, mu), fontdict={'size': 9})  # limit to 40 characters
        print('%15s: %.3g' % (k, mu))
    plt.savefig('evolve.png', dpi=200)


def plot_results_overlay(start=0, stop=0):  # from utils.utils import *; plot_results_overlay()
    # Plot training 'results*.txt', overlaying train and val losses
    s = ['train', 'train', 'train', 'Precision', '[email protected]', 'val', 'val', 'val', 'Recall', '[email protected]:0.95']  # legends
    t = ['GIoU', 'Objectness', 'Classification', 'P-R', 'mAP-F1']  # titles
    for f in sorted(glob.glob('results*.txt') + glob.glob('../../Downloads/results*.txt')):
        results = np.loadtxt(f, usecols=[2, 3, 4, 8, 9, 12, 13, 14, 10, 11], ndmin=2).T
        n = results.shape[1]  # number of rows
        x = range(start, min(stop, n) if stop else n)
        fig, ax = plt.subplots(1, 5, figsize=(14, 3.5), tight_layout=True)
        ax = ax.ravel()
        for i in range(5):
            for j in [i, i + 5]:
                y = results[j, x]
                # ax[i].plot(x, y, marker='.', label=s[j])
                y_smooth = butter_lowpass_filtfilt(y)
                ax[i].plot(x, np.gradient(y_smooth), marker='.', label=s[j])

            ax[i].set_title(t[i])
            ax[i].legend()
            ax[i].set_ylabel(f) if i == 0 else None  # add filename
        fig.savefig(f.replace('.txt', '.png'), dpi=200)


def plot_results(start=0, stop=0, bucket='', id=()):  # from utils.utils import *; plot_results()
    # Plot training 'results*.txt' as seen in https://github.com/ultralytics/yolov3#training
    fig, ax = plt.subplots(2, 5, figsize=(12, 6))
    ax = ax.ravel()
    s = ['GIoU', 'Objectness', 'Classification', 'Precision', 'Recall',
         'val GIoU', 'val Objectness', 'val Classification', '[email protected]', '[email protected]:0.95']
    if bucket:
        os.system('rm -rf storage.googleapis.com')
        files = ['https://storage.googleapis.com/%s/results%g.txt' % (bucket, x) for x in id]
    else:
        files = glob.glob('results*.txt') + glob.glob('../../Downloads/results*.txt')
    for f in sorted(files):
        try:
            results = np.loadtxt(f, usecols=[2, 3, 4, 8, 9, 12, 13, 14, 10, 11], ndmin=2).T
            n = results.shape[1]  # number of rows
            x = range(start, min(stop, n) if stop else n)
            for i in range(10):
                y = results[i, x]
                if i in [0, 1, 2, 5, 6, 7]:
                    y[y == 0] = np.nan  # dont show zero loss values
                    # y /= y[0]  # normalize
                ax[i].plot(x, y, marker='.', label=Path(f).stem, linewidth=2, markersize=8)
                ax[i].set_title(s[i])
                # if i in [5, 6, 7]:  # share train and val loss y axes
                #     ax[i].get_shared_y_axes().join(ax[i], ax[i - 5])
        except:
            print('Warning: Plotting error for %s, skipping file' % f)

    fig.tight_layout()
    ax[1].legend()
    fig.savefig('results.png', dpi=200)