File size: 9,479 Bytes
fe341fa
 
b42e8a5
19e2482
1e84a23
 
fe341fa
1e84a23
 
 
 
 
 
124f0e8
1e84a23
4949401
1e84a23
f5da528
fe341fa
 
 
 
 
 
 
 
 
 
 
1e84a23
fe341fa
22d6088
fe341fa
22d6088
 
 
 
1e84a23
 
 
 
c020875
1e84a23
 
 
 
 
 
 
 
 
 
 
 
 
19e2482
1e84a23
 
 
19e2482
1e84a23
19e2482
1e84a23
4949401
1e84a23
 
 
 
 
 
 
 
f02481c
 
 
 
3c6e2f7
 
 
 
 
1e84a23
 
 
 
 
 
9da56b6
1e84a23
c8c5ef3
1e84a23
 
 
 
3c6e2f7
1e84a23
 
 
38f5c1a
 
 
 
 
 
 
 
 
 
 
 
 
 
121d90b
38f5c1a
 
 
 
 
1e84a23
89655a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e84a23
 
d8f5fcf
 
1e84a23
 
 
 
 
 
 
 
 
 
 
d8f5fcf
 
 
 
9f27902
1e84a23
 
fe341fa
1e84a23
 
 
 
883924d
 
 
 
 
 
 
 
1e84a23
 
8b8b792
121d90b
 
8b8b792
1e84a23
 
 
b810b21
1e84a23
1d17b9a
 
 
 
 
 
 
 
 
 
1e84a23
 
a586751
 
 
 
 
 
 
 
 
1e84a23
 
 
 
 
 
 
 
 
 
24c5a94
df224a0
24c5a94
2377e5f
 
24c5a94
1e84a23
 
 
 
 
df224a0
1e84a23
df224a0
 
1e84a23
df224a0
 
1e84a23
 
 
 
a586751
df224a0
a586751
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
# PyTorch utils

import logging
import math
import os
import time
from contextlib import contextmanager
from copy import deepcopy

import torch
import torch.backends.cudnn as cudnn
import torch.nn as nn
import torch.nn.functional as F
import torchvision

logger = logging.getLogger(__name__)


@contextmanager
def torch_distributed_zero_first(local_rank: int):
    """
    Decorator to make all processes in distributed training wait for each local_master to do something.
    """
    if local_rank not in [-1, 0]:
        torch.distributed.barrier()
    yield
    if local_rank == 0:
        torch.distributed.barrier()


def init_torch_seeds(seed=0):
    # Speed-reproducibility tradeoff https://pytorch.org/docs/stable/notes/randomness.html
    torch.manual_seed(seed)
    if seed == 0:  # slower, more reproducible
        cudnn.deterministic = True
        cudnn.benchmark = False
    else:  # faster, less reproducible
        cudnn.deterministic = False
        cudnn.benchmark = True


def select_device(device='', batch_size=None):
    # device = 'cpu' or '0' or '0,1,2,3'
    cpu_request = device.lower() == 'cpu'
    if device and not cpu_request:  # if device requested other than 'cpu'
        os.environ['CUDA_VISIBLE_DEVICES'] = device  # set environment variable
        assert torch.cuda.is_available(), 'CUDA unavailable, invalid device %s requested' % device  # check availablity

    cuda = False if cpu_request else torch.cuda.is_available()
    if cuda:
        c = 1024 ** 2  # bytes to MB
        ng = torch.cuda.device_count()
        if ng > 1 and batch_size:  # check that batch_size is compatible with device_count
            assert batch_size % ng == 0, 'batch-size %g not multiple of GPU count %g' % (batch_size, ng)
        x = [torch.cuda.get_device_properties(i) for i in range(ng)]
        s = f'Using torch {torch.__version__} '
        for i in range(0, ng):
            if i == 1:
                s = ' ' * len(s)
            logger.info("%sCUDA:%g (%s, %dMB)" % (s, i, x[i].name, x[i].total_memory / c))
    else:
        logger.info(f'Using torch {torch.__version__} CPU')

    logger.info('')  # skip a line
    return torch.device('cuda:0' if cuda else 'cpu')


def time_synchronized():
    torch.cuda.synchronize() if torch.cuda.is_available() else None
    return time.time()


def is_parallel(model):
    return type(model) in (nn.parallel.DataParallel, nn.parallel.DistributedDataParallel)


def intersect_dicts(da, db, exclude=()):
    # Dictionary intersection of matching keys and shapes, omitting 'exclude' keys, using da values
    return {k: v for k, v in da.items() if k in db and not any(x in k for x in exclude) and v.shape == db[k].shape}


def initialize_weights(model):
    for m in model.modules():
        t = type(m)
        if t is nn.Conv2d:
            pass  # nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
        elif t is nn.BatchNorm2d:
            m.eps = 1e-3
            m.momentum = 0.03
        elif t in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6]:
            m.inplace = True


def find_modules(model, mclass=nn.Conv2d):
    # Finds layer indices matching module class 'mclass'
    return [i for i, m in enumerate(model.module_list) if isinstance(m, mclass)]


def sparsity(model):
    # Return global model sparsity
    a, b = 0., 0.
    for p in model.parameters():
        a += p.numel()
        b += (p == 0).sum()
    return b / a


def prune(model, amount=0.3):
    # Prune model to requested global sparsity
    import torch.nn.utils.prune as prune
    print('Pruning model... ', end='')
    for name, m in model.named_modules():
        if isinstance(m, nn.Conv2d):
            prune.l1_unstructured(m, name='weight', amount=amount)  # prune
            prune.remove(m, 'weight')  # make permanent
    print(' %.3g global sparsity' % sparsity(model))


def fuse_conv_and_bn(conv, bn):
    # Fuse convolution and batchnorm layers https://tehnokv.com/posts/fusing-batchnorm-and-conv/
    fusedconv = nn.Conv2d(conv.in_channels,
                          conv.out_channels,
                          kernel_size=conv.kernel_size,
                          stride=conv.stride,
                          padding=conv.padding,
                          groups=conv.groups,
                          bias=True).requires_grad_(False).to(conv.weight.device)

    # prepare filters
    w_conv = conv.weight.clone().view(conv.out_channels, -1)
    w_bn = torch.diag(bn.weight.div(torch.sqrt(bn.eps + bn.running_var)))
    fusedconv.weight.copy_(torch.mm(w_bn, w_conv).view(fusedconv.weight.size()))

    # prepare spatial bias
    b_conv = torch.zeros(conv.weight.size(0), device=conv.weight.device) if conv.bias is None else conv.bias
    b_bn = bn.bias - bn.weight.mul(bn.running_mean).div(torch.sqrt(bn.running_var + bn.eps))
    fusedconv.bias.copy_(torch.mm(w_bn, b_conv.reshape(-1, 1)).reshape(-1) + b_bn)

    return fusedconv


def model_info(model, verbose=False, img_size=640):
    # Model information. img_size may be int or list, i.e. img_size=640 or img_size=[640, 320]
    n_p = sum(x.numel() for x in model.parameters())  # number parameters
    n_g = sum(x.numel() for x in model.parameters() if x.requires_grad)  # number gradients
    if verbose:
        print('%5s %40s %9s %12s %20s %10s %10s' % ('layer', 'name', 'gradient', 'parameters', 'shape', 'mu', 'sigma'))
        for i, (name, p) in enumerate(model.named_parameters()):
            name = name.replace('module_list.', '')
            print('%5g %40s %9s %12g %20s %10.3g %10.3g' %
                  (i, name, p.requires_grad, p.numel(), list(p.shape), p.mean(), p.std()))

    try:  # FLOPS
        from thop import profile
        stride = int(model.stride.max())
        flops = profile(deepcopy(model), inputs=(torch.zeros(1, 3, stride, stride),), verbose=False)[0] / 1E9 * 2
        img_size = img_size if isinstance(img_size, list) else [img_size, img_size]  # expand if int/float
        fs = ', %.1f GFLOPS' % (flops * img_size[0] / stride * img_size[1] / stride)  # 640x640 FLOPS
    except (ImportError, Exception):
        fs = ''

    logger.info(f"Model Summary: {len(list(model.modules()))} layers, {n_p} parameters, {n_g} gradients{fs}")


def load_classifier(name='resnet101', n=2):
    # Loads a pretrained model reshaped to n-class output
    model = torchvision.models.__dict__[name](pretrained=True)

    # ResNet model properties
    # input_size = [3, 224, 224]
    # input_space = 'RGB'
    # input_range = [0, 1]
    # mean = [0.485, 0.456, 0.406]
    # std = [0.229, 0.224, 0.225]

    # Reshape output to n classes
    filters = model.fc.weight.shape[1]
    model.fc.bias = nn.Parameter(torch.zeros(n), requires_grad=True)
    model.fc.weight = nn.Parameter(torch.zeros(n, filters), requires_grad=True)
    model.fc.out_features = n
    return model


def scale_img(img, ratio=1.0, same_shape=False):  # img(16,3,256,416), r=ratio
    # scales img(bs,3,y,x) by ratio
    if ratio == 1.0:
        return img
    else:
        h, w = img.shape[2:]
        s = (int(h * ratio), int(w * ratio))  # new size
        img = F.interpolate(img, size=s, mode='bilinear', align_corners=False)  # resize
        if not same_shape:  # pad/crop img
            gs = 32  # (pixels) grid size
            h, w = [math.ceil(x * ratio / gs) * gs for x in (h, w)]
        return F.pad(img, [0, w - s[1], 0, h - s[0]], value=0.447)  # value = imagenet mean


def copy_attr(a, b, include=(), exclude=()):
    # Copy attributes from b to a, options to only include [...] and to exclude [...]
    for k, v in b.__dict__.items():
        if (len(include) and k not in include) or k.startswith('_') or k in exclude:
            continue
        else:
            setattr(a, k, v)


class ModelEMA:
    """ Model Exponential Moving Average from https://github.com/rwightman/pytorch-image-models
    Keep a moving average of everything in the model state_dict (parameters and buffers).
    This is intended to allow functionality like
    https://www.tensorflow.org/api_docs/python/tf/train/ExponentialMovingAverage
    A smoothed version of the weights is necessary for some training schemes to perform well.
    This class is sensitive where it is initialized in the sequence of model init,
    GPU assignment and distributed training wrappers.
    """

    def __init__(self, model, decay=0.9999, updates=0):
        # Create EMA
        self.ema = deepcopy(model.module if is_parallel(model) else model).eval()  # FP32 EMA
        # if next(model.parameters()).device.type != 'cpu':
        #     self.ema.half()  # FP16 EMA
        self.updates = updates  # number of EMA updates
        self.decay = lambda x: decay * (1 - math.exp(-x / 2000))  # decay exponential ramp (to help early epochs)
        for p in self.ema.parameters():
            p.requires_grad_(False)

    def update(self, model):
        # Update EMA parameters
        with torch.no_grad():
            self.updates += 1
            d = self.decay(self.updates)

            msd = model.module.state_dict() if is_parallel(model) else model.state_dict()  # model state_dict
            for k, v in self.ema.state_dict().items():
                if v.dtype.is_floating_point:
                    v *= d
                    v += (1. - d) * msd[k].detach()

    def update_attr(self, model, include=(), exclude=('process_group', 'reducer')):
        # Update EMA attributes
        copy_attr(self.ema, model, include, exclude)