File size: 5,588 Bytes
0f395b3 a814720 2bcc89d a814720 1c8464e 0dec8ff a814720 2bcc89d d5b6416 9b11f0c a814720 2aaaec3 8ace1b1 7f16406 a814720 14b0abe a814720 6e3c3b6 0f395b3 6e3c3b6 7f16406 c03d590 866bc7d 7f16406 14b0abe 9b11f0c 84a9466 6e3c3b6 0fda95a 84a9466 a814720 f5b8f7d a814720 f5b8f7d a814720 f5b8f7d a814720 f5b8f7d a814720 f5b8f7d a814720 f5b8f7d 14b0abe a814720 569757e f5b8f7d 14b0abe a814720 569757e f5b8f7d a814720 f5b8f7d 7f16406 f5b8f7d 87ca35b f5b8f7d 87ca35b f5b8f7d 87ca35b 7f16406 14b0abe e92245a c8c5ef3 c15e25c db28ce6 311de00 c15e25c db28ce6 f542926 9a3da79 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 |
"""YOLOv5 PyTorch Hub models https://pytorch.org/hub/ultralytics_yolov5/
Usage:
import torch
model = torch.hub.load('ultralytics/yolov5', 'yolov5s')
"""
from pathlib import Path
import torch
from models.yolo import Model
from utils.general import check_requirements, set_logging
from utils.google_utils import attempt_download
from utils.torch_utils import select_device
dependencies = ['torch', 'yaml']
check_requirements(Path(__file__).parent / 'requirements.txt', exclude=('pycocotools', 'thop'))
set_logging()
def create(name, pretrained, channels, classes, autoshape):
"""Creates a specified YOLOv5 model
Arguments:
name (str): name of model, i.e. 'yolov5s'
pretrained (bool): load pretrained weights into the model
channels (int): number of input channels
classes (int): number of model classes
Returns:
pytorch model
"""
try:
cfg = list((Path(__file__).parent / 'models').rglob(f'{name}.yaml'))[0] # model.yaml path
model = Model(cfg, channels, classes)
if pretrained:
fname = f'{name}.pt' # checkpoint filename
attempt_download(fname) # download if not found locally
ckpt = torch.load(fname, map_location=torch.device('cpu')) # load
msd = model.state_dict() # model state_dict
csd = ckpt['model'].float().state_dict() # checkpoint state_dict as FP32
csd = {k: v for k, v in csd.items() if msd[k].shape == v.shape} # filter
model.load_state_dict(csd, strict=False) # load
if len(ckpt['model'].names) == classes:
model.names = ckpt['model'].names # set class names attribute
if autoshape:
model = model.autoshape() # for file/URI/PIL/cv2/np inputs and NMS
device = select_device('0' if torch.cuda.is_available() else 'cpu') # default to GPU if available
return model.to(device)
except Exception as e:
help_url = 'https://github.com/ultralytics/yolov5/issues/36'
s = 'Cache maybe be out of date, try force_reload=True. See %s for help.' % help_url
raise Exception(s) from e
def custom(path_or_model='path/to/model.pt', autoshape=True):
"""YOLOv5-custom model https://github.com/ultralytics/yolov5
Arguments (3 options):
path_or_model (str): 'path/to/model.pt'
path_or_model (dict): torch.load('path/to/model.pt')
path_or_model (nn.Module): torch.load('path/to/model.pt')['model']
Returns:
pytorch model
"""
model = torch.load(path_or_model) if isinstance(path_or_model, str) else path_or_model # load checkpoint
if isinstance(model, dict):
model = model['ema' if model.get('ema') else 'model'] # load model
hub_model = Model(model.yaml).to(next(model.parameters()).device) # create
hub_model.load_state_dict(model.float().state_dict()) # load state_dict
hub_model.names = model.names # class names
if autoshape:
hub_model = hub_model.autoshape() # for file/URI/PIL/cv2/np inputs and NMS
device = select_device('0' if torch.cuda.is_available() else 'cpu') # default to GPU if available
return hub_model.to(device)
def yolov5s(pretrained=True, channels=3, classes=80, autoshape=True):
# YOLOv5-small model https://github.com/ultralytics/yolov5
return create('yolov5s', pretrained, channels, classes, autoshape)
def yolov5m(pretrained=True, channels=3, classes=80, autoshape=True):
# YOLOv5-medium model https://github.com/ultralytics/yolov5
return create('yolov5m', pretrained, channels, classes, autoshape)
def yolov5l(pretrained=True, channels=3, classes=80, autoshape=True):
# YOLOv5-large model https://github.com/ultralytics/yolov5
return create('yolov5l', pretrained, channels, classes, autoshape)
def yolov5x(pretrained=True, channels=3, classes=80, autoshape=True):
# YOLOv5-xlarge model https://github.com/ultralytics/yolov5
return create('yolov5x', pretrained, channels, classes, autoshape)
def yolov5s6(pretrained=True, channels=3, classes=80, autoshape=True):
# YOLOv5-small model https://github.com/ultralytics/yolov5
return create('yolov5s6', pretrained, channels, classes, autoshape)
def yolov5m6(pretrained=True, channels=3, classes=80, autoshape=True):
# YOLOv5-medium model https://github.com/ultralytics/yolov5
return create('yolov5m6', pretrained, channels, classes, autoshape)
def yolov5l6(pretrained=True, channels=3, classes=80, autoshape=True):
# YOLOv5-large model https://github.com/ultralytics/yolov5
return create('yolov5l6', pretrained, channels, classes, autoshape)
def yolov5x6(pretrained=True, channels=3, classes=80, autoshape=True):
# YOLOv5-xlarge model https://github.com/ultralytics/yolov5
return create('yolov5x6', pretrained, channels, classes, autoshape)
if __name__ == '__main__':
model = create(name='yolov5s', pretrained=True, channels=3, classes=80, autoshape=True) # pretrained example
# model = custom(path_or_model='path/to/model.pt') # custom example
# Verify inference
import cv2
import numpy as np
from PIL import Image
imgs = ['data/images/zidane.jpg', # filename
'https://github.com/ultralytics/yolov5/releases/download/v1.0/zidane.jpg', # URI
cv2.imread('data/images/bus.jpg')[:, :, ::-1], # OpenCV
Image.open('data/images/bus.jpg'), # PIL
np.zeros((320, 640, 3))] # numpy
results = model(imgs) # batched inference
results.print()
results.save()
|