File size: 14,397 Bytes
24bea5e
 
 
 
fe341fa
24bea5e
095197b
4250f84
 
fe341fa
 
0a3ff71
 
fe341fa
 
 
 
 
 
 
8a4175c
 
 
 
 
 
 
 
36d12a5
fe341fa
 
 
 
 
 
 
 
4250f84
fe341fa
 
 
 
 
 
 
 
 
36d12a5
f639e14
fe341fa
 
 
f639e14
fe341fa
 
36d12a5
fe341fa
 
 
 
f000714
 
 
 
 
 
 
fe341fa
f000714
 
 
fe341fa
f000714
 
 
 
 
fe341fa
f639e14
36d12a5
0be58f1
f000714
fe341fa
f639e14
 
 
 
fe341fa
8a4175c
36d12a5
 
 
43569d5
fe341fa
 
 
0bb4395
fe341fa
0bb4395
 
fe341fa
0bb4395
fe341fa
 
 
8ac96b7
 
fe341fa
 
 
 
 
 
 
 
 
 
 
 
 
 
4250f84
 
0a3ff71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ea771d
0a3ff71
 
 
 
 
 
 
 
 
 
 
 
 
43569d5
0a3ff71
 
 
d48a34d
0a3ff71
2c56ad5
0a3ff71
 
 
 
2c56ad5
0a3ff71
 
 
 
36d12a5
 
 
 
 
 
ec2da4a
0a3ff71
 
e8c5237
5389300
0a3ff71
 
f010147
5389300
 
 
095197b
 
c3d5ac1
 
 
 
 
 
 
 
095197b
 
0a3ff71
 
 
bb5ebc2
0a3ff71
e8c5237
0a3ff71
 
 
 
 
 
406ee52
 
5ea771d
 
406ee52
 
 
 
 
 
 
 
a84cd02
 
5ea771d
 
 
 
 
 
 
 
406ee52
5ea771d
afa5cfb
5ea771d
 
 
 
406ee52
afa5cfb
a84cd02
5ea771d
 
 
affa284
 
 
 
5ea771d
cba4303
406ee52
 
 
 
 
0414637
5ea771d
 
 
 
 
 
 
 
 
 
 
7882950
5ea771d
406ee52
 
 
 
0414637
5ea771d
 
0414637
c6c88dc
 
 
 
 
 
 
406ee52
 
c6c88dc
 
 
 
 
 
 
 
 
 
 
 
0414637
5ea771d
 
 
 
0414637
5ea771d
 
0a3ff71
 
c3d5ac1
f000714
f639e14
f010147
4250f84
 
f639e14
4250f84
f639e14
4250f84
 
 
 
 
 
 
 
 
f000714
bb5ebc2
f639e14
 
f000714
f639e14
 
 
 
 
 
 
 
 
8a4175c
f639e14
 
 
 
 
 
f000714
bb5ebc2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
"""
Model validation metrics
"""

import math
import warnings
from pathlib import Path

import matplotlib.pyplot as plt
import numpy as np
import torch


def fitness(x):
    # Model fitness as a weighted combination of metrics
    w = [0.0, 0.0, 0.1, 0.9]  # weights for [P, R, [email protected], [email protected]:0.95]
    return (x[:, :4] * w).sum(1)


def smooth(y, f=0.05):
    # Box filter of fraction f
    nf = round(len(y) * f * 2) // 2 + 1  # number of filter elements (must be odd)
    p = np.ones(nf // 2)  # ones padding
    yp = np.concatenate((p * y[0], y, p * y[-1]), 0)  # y padded
    return np.convolve(yp, np.ones(nf) / nf, mode='valid')  # y-smoothed


def ap_per_class(tp, conf, pred_cls, target_cls, plot=False, save_dir='.', names=(), eps=1e-16):
    """ Compute the average precision, given the recall and precision curves.
    Source: https://github.com/rafaelpadilla/Object-Detection-Metrics.
    # Arguments
        tp:  True positives (nparray, nx1 or nx10).
        conf:  Objectness value from 0-1 (nparray).
        pred_cls:  Predicted object classes (nparray).
        target_cls:  True object classes (nparray).
        plot:  Plot precision-recall curve at [email protected]
        save_dir:  Plot save directory
    # Returns
        The average precision as computed in py-faster-rcnn.
    """

    # Sort by objectness
    i = np.argsort(-conf)
    tp, conf, pred_cls = tp[i], conf[i], pred_cls[i]

    # Find unique classes
    unique_classes, nt = np.unique(target_cls, return_counts=True)
    nc = unique_classes.shape[0]  # number of classes, number of detections

    # Create Precision-Recall curve and compute AP for each class
    px, py = np.linspace(0, 1, 1000), []  # for plotting
    ap, p, r = np.zeros((nc, tp.shape[1])), np.zeros((nc, 1000)), np.zeros((nc, 1000))
    for ci, c in enumerate(unique_classes):
        i = pred_cls == c
        n_l = nt[ci]  # number of labels
        n_p = i.sum()  # number of predictions
        if n_p == 0 or n_l == 0:
            continue

        # Accumulate FPs and TPs
        fpc = (1 - tp[i]).cumsum(0)
        tpc = tp[i].cumsum(0)

        # Recall
        recall = tpc / (n_l + eps)  # recall curve
        r[ci] = np.interp(-px, -conf[i], recall[:, 0], left=0)  # negative x, xp because xp decreases

        # Precision
        precision = tpc / (tpc + fpc)  # precision curve
        p[ci] = np.interp(-px, -conf[i], precision[:, 0], left=1)  # p at pr_score

        # AP from recall-precision curve
        for j in range(tp.shape[1]):
            ap[ci, j], mpre, mrec = compute_ap(recall[:, j], precision[:, j])
            if plot and j == 0:
                py.append(np.interp(px, mrec, mpre))  # precision at [email protected]

    # Compute F1 (harmonic mean of precision and recall)
    f1 = 2 * p * r / (p + r + eps)
    names = [v for k, v in names.items() if k in unique_classes]  # list: only classes that have data
    names = dict(enumerate(names))  # to dict
    if plot:
        plot_pr_curve(px, py, ap, Path(save_dir) / 'PR_curve.png', names)
        plot_mc_curve(px, f1, Path(save_dir) / 'F1_curve.png', names, ylabel='F1')
        plot_mc_curve(px, p, Path(save_dir) / 'P_curve.png', names, ylabel='Precision')
        plot_mc_curve(px, r, Path(save_dir) / 'R_curve.png', names, ylabel='Recall')

    i = smooth(f1.mean(0), 0.1).argmax()  # max F1 index
    p, r, f1 = p[:, i], r[:, i], f1[:, i]
    tp = (r * nt).round()  # true positives
    fp = (tp / (p + eps) - tp).round()  # false positives
    return tp, fp, p, r, f1, ap, unique_classes.astype(int)


def compute_ap(recall, precision):
    """ Compute the average precision, given the recall and precision curves
    # Arguments
        recall:    The recall curve (list)
        precision: The precision curve (list)
    # Returns
        Average precision, precision curve, recall curve
    """

    # Append sentinel values to beginning and end
    mrec = np.concatenate(([0.0], recall, [1.0]))
    mpre = np.concatenate(([1.0], precision, [0.0]))

    # Compute the precision envelope
    mpre = np.flip(np.maximum.accumulate(np.flip(mpre)))

    # Integrate area under curve
    method = 'interp'  # methods: 'continuous', 'interp'
    if method == 'interp':
        x = np.linspace(0, 1, 101)  # 101-point interp (COCO)
        ap = np.trapz(np.interp(x, mrec, mpre), x)  # integrate
    else:  # 'continuous'
        i = np.where(mrec[1:] != mrec[:-1])[0]  # points where x axis (recall) changes
        ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1])  # area under curve

    return ap, mpre, mrec


class ConfusionMatrix:
    # Updated version of https://github.com/kaanakan/object_detection_confusion_matrix
    def __init__(self, nc, conf=0.25, iou_thres=0.45):
        self.matrix = np.zeros((nc + 1, nc + 1))
        self.nc = nc  # number of classes
        self.conf = conf
        self.iou_thres = iou_thres

    def process_batch(self, detections, labels):
        """
        Return intersection-over-union (Jaccard index) of boxes.
        Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
        Arguments:
            detections (Array[N, 6]), x1, y1, x2, y2, conf, class
            labels (Array[M, 5]), class, x1, y1, x2, y2
        Returns:
            None, updates confusion matrix accordingly
        """
        detections = detections[detections[:, 4] > self.conf]
        gt_classes = labels[:, 0].int()
        detection_classes = detections[:, 5].int()
        iou = box_iou(labels[:, 1:], detections[:, :4])

        x = torch.where(iou > self.iou_thres)
        if x[0].shape[0]:
            matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy()
            if x[0].shape[0] > 1:
                matches = matches[matches[:, 2].argsort()[::-1]]
                matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
                matches = matches[matches[:, 2].argsort()[::-1]]
                matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
        else:
            matches = np.zeros((0, 3))

        n = matches.shape[0] > 0
        m0, m1, _ = matches.transpose().astype(int)
        for i, gc in enumerate(gt_classes):
            j = m0 == i
            if n and sum(j) == 1:
                self.matrix[detection_classes[m1[j]], gc] += 1  # correct
            else:
                self.matrix[self.nc, gc] += 1  # background FP

        if n:
            for i, dc in enumerate(detection_classes):
                if not any(m1 == i):
                    self.matrix[dc, self.nc] += 1  # background FN

    def matrix(self):
        return self.matrix

    def tp_fp(self):
        tp = self.matrix.diagonal()  # true positives
        fp = self.matrix.sum(1) - tp  # false positives
        # fn = self.matrix.sum(0) - tp  # false negatives (missed detections)
        return tp[:-1], fp[:-1]  # remove background class

    def plot(self, normalize=True, save_dir='', names=()):
        try:
            import seaborn as sn

            array = self.matrix / ((self.matrix.sum(0).reshape(1, -1) + 1E-9) if normalize else 1)  # normalize columns
            array[array < 0.005] = np.nan  # don't annotate (would appear as 0.00)

            fig = plt.figure(figsize=(12, 9), tight_layout=True)
            nc, nn = self.nc, len(names)  # number of classes, names
            sn.set(font_scale=1.0 if nc < 50 else 0.8)  # for label size
            labels = (0 < nn < 99) and (nn == nc)  # apply names to ticklabels
            with warnings.catch_warnings():
                warnings.simplefilter('ignore')  # suppress empty matrix RuntimeWarning: All-NaN slice encountered
                sn.heatmap(array,
                           annot=nc < 30,
                           annot_kws={
                               "size": 8},
                           cmap='Blues',
                           fmt='.2f',
                           square=True,
                           vmin=0.0,
                           xticklabels=names + ['background FP'] if labels else "auto",
                           yticklabels=names + ['background FN'] if labels else "auto").set_facecolor((1, 1, 1))
            fig.axes[0].set_xlabel('True')
            fig.axes[0].set_ylabel('Predicted')
            fig.savefig(Path(save_dir) / 'confusion_matrix.png', dpi=250)
            plt.close()
        except Exception as e:
            print(f'WARNING: ConfusionMatrix plot failure: {e}')

    def print(self):
        for i in range(self.nc + 1):
            print(' '.join(map(str, self.matrix[i])))


def bbox_iou(box1, box2, xywh=True, GIoU=False, DIoU=False, CIoU=False, eps=1e-7):
    # Returns Intersection over Union (IoU) of box1(1,4) to box2(n,4)

    # Get the coordinates of bounding boxes
    if xywh:  # transform from xywh to xyxy
        (x1, y1, w1, h1), (x2, y2, w2, h2) = box1.chunk(4, 1), box2.chunk(4, 1)
        w1_, h1_, w2_, h2_ = w1 / 2, h1 / 2, w2 / 2, h2 / 2
        b1_x1, b1_x2, b1_y1, b1_y2 = x1 - w1_, x1 + w1_, y1 - h1_, y1 + h1_
        b2_x1, b2_x2, b2_y1, b2_y2 = x2 - w2_, x2 + w2_, y2 - h2_, y2 + h2_
    else:  # x1, y1, x2, y2 = box1
        b1_x1, b1_y1, b1_x2, b1_y2 = box1.chunk(4, 1)
        b2_x1, b2_y1, b2_x2, b2_y2 = box2.chunk(4, 1)
        w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1
        w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1

    # Intersection area
    inter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \
            (torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0)

    # Union Area
    union = w1 * h1 + w2 * h2 - inter + eps

    # IoU
    iou = inter / union
    if CIoU or DIoU or GIoU:
        cw = torch.max(b1_x2, b2_x2) - torch.min(b1_x1, b2_x1)  # convex (smallest enclosing box) width
        ch = torch.max(b1_y2, b2_y2) - torch.min(b1_y1, b2_y1)  # convex height
        if CIoU or DIoU:  # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1
            c2 = cw ** 2 + ch ** 2 + eps  # convex diagonal squared
            rho2 = ((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 + (b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4  # center dist ** 2
            if CIoU:  # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47
                v = (4 / math.pi ** 2) * torch.pow(torch.atan(w2 / (h2 + eps)) - torch.atan(w1 / (h1 + eps)), 2)
                with torch.no_grad():
                    alpha = v / (v - iou + (1 + eps))
                return iou - (rho2 / c2 + v * alpha)  # CIoU
            return iou - rho2 / c2  # DIoU
        c_area = cw * ch + eps  # convex area
        return iou - (c_area - union) / c_area  # GIoU https://arxiv.org/pdf/1902.09630.pdf
    return iou  # IoU


def box_area(box):
    # box = xyxy(4,n)
    return (box[2] - box[0]) * (box[3] - box[1])


def box_iou(box1, box2, eps=1e-7):
    # https://github.com/pytorch/vision/blob/master/torchvision/ops/boxes.py
    """
    Return intersection-over-union (Jaccard index) of boxes.
    Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
    Arguments:
        box1 (Tensor[N, 4])
        box2 (Tensor[M, 4])
    Returns:
        iou (Tensor[N, M]): the NxM matrix containing the pairwise
            IoU values for every element in boxes1 and boxes2
    """

    # inter(N,M) = (rb(N,M,2) - lt(N,M,2)).clamp(0).prod(2)
    (a1, a2), (b1, b2) = box1[:, None].chunk(2, 2), box2.chunk(2, 1)
    inter = (torch.min(a2, b2) - torch.max(a1, b1)).clamp(0).prod(2)

    # IoU = inter / (area1 + area2 - inter)
    return inter / (box_area(box1.T)[:, None] + box_area(box2.T) - inter + eps)


def bbox_ioa(box1, box2, eps=1e-7):
    """ Returns the intersection over box2 area given box1, box2. Boxes are x1y1x2y2
    box1:       np.array of shape(4)
    box2:       np.array of shape(nx4)
    returns:    np.array of shape(n)
    """

    # Get the coordinates of bounding boxes
    b1_x1, b1_y1, b1_x2, b1_y2 = box1
    b2_x1, b2_y1, b2_x2, b2_y2 = box2.T

    # Intersection area
    inter_area = (np.minimum(b1_x2, b2_x2) - np.maximum(b1_x1, b2_x1)).clip(0) * \
                 (np.minimum(b1_y2, b2_y2) - np.maximum(b1_y1, b2_y1)).clip(0)

    # box2 area
    box2_area = (b2_x2 - b2_x1) * (b2_y2 - b2_y1) + eps

    # Intersection over box2 area
    return inter_area / box2_area


def wh_iou(wh1, wh2, eps=1e-7):
    # Returns the nxm IoU matrix. wh1 is nx2, wh2 is mx2
    wh1 = wh1[:, None]  # [N,1,2]
    wh2 = wh2[None]  # [1,M,2]
    inter = torch.min(wh1, wh2).prod(2)  # [N,M]
    return inter / (wh1.prod(2) + wh2.prod(2) - inter + eps)  # iou = inter / (area1 + area2 - inter)


# Plots ----------------------------------------------------------------------------------------------------------------


def plot_pr_curve(px, py, ap, save_dir=Path('pr_curve.png'), names=()):
    # Precision-recall curve
    fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True)
    py = np.stack(py, axis=1)

    if 0 < len(names) < 21:  # display per-class legend if < 21 classes
        for i, y in enumerate(py.T):
            ax.plot(px, y, linewidth=1, label=f'{names[i]} {ap[i, 0]:.3f}')  # plot(recall, precision)
    else:
        ax.plot(px, py, linewidth=1, color='grey')  # plot(recall, precision)

    ax.plot(px, py.mean(1), linewidth=3, color='blue', label='all classes %.3f [email protected]' % ap[:, 0].mean())
    ax.set_xlabel('Recall')
    ax.set_ylabel('Precision')
    ax.set_xlim(0, 1)
    ax.set_ylim(0, 1)
    plt.legend(bbox_to_anchor=(1.04, 1), loc="upper left")
    fig.savefig(save_dir, dpi=250)
    plt.close()


def plot_mc_curve(px, py, save_dir=Path('mc_curve.png'), names=(), xlabel='Confidence', ylabel='Metric'):
    # Metric-confidence curve
    fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True)

    if 0 < len(names) < 21:  # display per-class legend if < 21 classes
        for i, y in enumerate(py):
            ax.plot(px, y, linewidth=1, label=f'{names[i]}')  # plot(confidence, metric)
    else:
        ax.plot(px, py.T, linewidth=1, color='grey')  # plot(confidence, metric)

    y = smooth(py.mean(0), 0.05)
    ax.plot(px, y, linewidth=3, color='blue', label=f'all classes {y.max():.2f} at {px[y.argmax()]:.3f}')
    ax.set_xlabel(xlabel)
    ax.set_ylabel(ylabel)
    ax.set_xlim(0, 1)
    ax.set_ylim(0, 1)
    plt.legend(bbox_to_anchor=(1.04, 1), loc="upper left")
    fig.savefig(save_dir, dpi=250)
    plt.close()