File size: 2,178 Bytes
24bea5e
 
1e84a23
bd815d4
8bf3cff
2e8e027
c2026a5
2e8e027
 
720afe6
c64fe21
2dfe320
c43439a
bd815d4
c43439a
2077d78
1e84a23
 
 
 
 
 
 
ce8e5dc
 
 
c64fe21
ce8e5dc
1e84a23
 
07166ba
1e84a23
 
 
 
 
68211f7
1e84a23
 
07166ba
1e84a23
 
bb8872e
1e84a23
 
08d3119
1e84a23
893a905
8dc68fc
1e84a23
893a905
08d3119
2dd43bc
1e84a23
2dd43bc
40d1c80
 
 
2809616
 
 
94d8fec
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license

# Start FROM Nvidia PyTorch image https://ngc.nvidia.com/catalog/containers/nvidia:pytorch
FROM nvcr.io/nvidia/pytorch:21.10-py3

# Install linux packages
RUN apt update && apt install -y zip htop screen libgl1-mesa-glx

# Install python dependencies
COPY requirements.txt .
RUN python -m pip install --upgrade pip
RUN pip uninstall -y nvidia-tensorboard nvidia-tensorboard-plugin-dlprof
RUN pip install --no-cache -r requirements.txt albumentations coremltools onnx gsutil notebook numpy Pillow wandb>=0.12.2
RUN pip install --no-cache torch==1.10.1+cu113 torchvision==0.11.2+cu113 -f https://download.pytorch.org/whl/cu113/torch_stable.html
# RUN pip install --no-cache -U torch torchvision

# Create working directory
RUN mkdir -p /usr/src/app
WORKDIR /usr/src/app

# Copy contents
COPY . /usr/src/app

# Downloads to user config dir
ADD https://ultralytics.com/assets/Arial.ttf /root/.config/Ultralytics/

# Set environment variables
# ENV HOME=/usr/src/app


# Usage Examples -------------------------------------------------------------------------------------------------------

# Build and Push
# t=ultralytics/yolov5:latest && sudo docker build -t $t . && sudo docker push $t

# Pull and Run
# t=ultralytics/yolov5:latest && sudo docker pull $t && sudo docker run -it --ipc=host --gpus all $t

# Pull and Run with local directory access
# t=ultralytics/yolov5:latest && sudo docker pull $t && sudo docker run -it --ipc=host --gpus all -v "$(pwd)"/datasets:/usr/src/datasets $t

# Kill all
# sudo docker kill $(sudo docker ps -q)

# Kill all image-based
# sudo docker kill $(sudo docker ps -qa --filter ancestor=ultralytics/yolov5:latest)

# Bash into running container
# sudo docker exec -it 5a9b5863d93d bash

# Bash into stopped container
# id=$(sudo docker ps -qa) && sudo docker start $id && sudo docker exec -it $id bash

# Clean up
# docker system prune -a --volumes

# Update Ubuntu drivers
# https://www.maketecheasier.com/install-nvidia-drivers-ubuntu/

# DDP test
# python -m torch.distributed.run --nproc_per_node 2 --master_port 1 train.py --epochs 3

# GCP VM from Image
# docker.io/ultralytics/yolov5:latest