File size: 1,698 Bytes
1e84a23 de56813 8bf3cff 2e8e027 c2026a5 2e8e027 720afe6 c64fe21 2dfe320 9ccfa85 bb79e13 2077d78 1e84a23 c64fe21 1e84a23 916d4aa 1e84a23 68211f7 1e84a23 c80b249 1e84a23 bb8872e 1e84a23 08d3119 1e84a23 893a905 8dc68fc 1e84a23 893a905 08d3119 2dd43bc 1e84a23 2dd43bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 |
# Start FROM Nvidia PyTorch image https://ngc.nvidia.com/catalog/containers/nvidia:pytorch
FROM nvcr.io/nvidia/pytorch:21.05-py3
# Install linux packages
RUN apt update && apt install -y zip htop screen libgl1-mesa-glx
# Install python dependencies
COPY requirements.txt .
RUN python -m pip install --upgrade pip
RUN pip uninstall -y nvidia-tensorboard nvidia-tensorboard-plugin-dlprof
RUN pip install --no-cache -r requirements.txt coremltools onnx gsutil notebook
RUN pip install --no-cache -U torch torchvision
# Create working directory
RUN mkdir -p /usr/src/app
WORKDIR /usr/src/app
# Copy contents
COPY . /usr/src/app
# Set environment variables
ENV HOME=/usr/src/app
# --------------------------------------------------- Extras Below ---------------------------------------------------
# Build and Push
# t=ultralytics/yolov5:latest && sudo docker build -t $t . && sudo docker push $t
# for v in {300..303}; do t=ultralytics/coco:v$v && sudo docker build -t $t . && sudo docker push $t; done
# Pull and Run
# t=ultralytics/yolov5:latest && sudo docker pull $t && sudo docker run -it --ipc=host --gpus all $t
# Pull and Run with local directory access
# t=ultralytics/yolov5:latest && sudo docker pull $t && sudo docker run -it --ipc=host --gpus all -v "$(pwd)"/coco:/usr/src/coco $t
# Kill all
# sudo docker kill $(sudo docker ps -q)
# Kill all image-based
# sudo docker kill $(sudo docker ps -qa --filter ancestor=ultralytics/yolov5:latest)
# Bash into running container
# sudo docker exec -it 5a9b5863d93d bash
# Bash into stopped container
# id=$(sudo docker ps -qa) && sudo docker start $id && sudo docker exec -it $id bash
# Clean up
# docker system prune -a --volumes
|