|
"""File for accessing YOLOv5 via PyTorch Hub https://pytorch.org/hub/ |
|
|
|
Usage: |
|
import torch |
|
model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True, channels=3, classes=80) |
|
""" |
|
|
|
dependencies = ['torch', 'yaml'] |
|
import os |
|
|
|
import torch |
|
|
|
from models.common import NMS |
|
from models.yolo import Model |
|
from utils.google_utils import attempt_download |
|
|
|
|
|
def create(name, pretrained, channels, classes): |
|
"""Creates a specified YOLOv5 model |
|
|
|
Arguments: |
|
name (str): name of model, i.e. 'yolov5s' |
|
pretrained (bool): load pretrained weights into the model |
|
channels (int): number of input channels |
|
classes (int): number of model classes |
|
|
|
Returns: |
|
pytorch model |
|
""" |
|
config = os.path.join(os.path.dirname(__file__), 'models', '%s.yaml' % name) |
|
try: |
|
model = Model(config, channels, classes) |
|
if pretrained: |
|
ckpt = '%s.pt' % name |
|
attempt_download(ckpt) |
|
state_dict = torch.load(ckpt, map_location=torch.device('cpu'))['model'].float().state_dict() |
|
state_dict = {k: v for k, v in state_dict.items() if model.state_dict()[k].shape == v.shape} |
|
model.load_state_dict(state_dict, strict=False) |
|
|
|
model.add_nms() |
|
model.eval() |
|
return model |
|
|
|
except Exception as e: |
|
help_url = 'https://github.com/ultralytics/yolov5/issues/36' |
|
s = 'Cache maybe be out of date, deleting cache and retrying may solve this. See %s for help.' % help_url |
|
raise Exception(s) from e |
|
|
|
|
|
def yolov5s(pretrained=False, channels=3, classes=80): |
|
"""YOLOv5-small model from https://github.com/ultralytics/yolov5 |
|
|
|
Arguments: |
|
pretrained (bool): load pretrained weights into the model, default=False |
|
channels (int): number of input channels, default=3 |
|
classes (int): number of model classes, default=80 |
|
|
|
Returns: |
|
pytorch model |
|
""" |
|
return create('yolov5s', pretrained, channels, classes) |
|
|
|
|
|
def yolov5m(pretrained=False, channels=3, classes=80): |
|
"""YOLOv5-medium model from https://github.com/ultralytics/yolov5 |
|
|
|
Arguments: |
|
pretrained (bool): load pretrained weights into the model, default=False |
|
channels (int): number of input channels, default=3 |
|
classes (int): number of model classes, default=80 |
|
|
|
Returns: |
|
pytorch model |
|
""" |
|
return create('yolov5m', pretrained, channels, classes) |
|
|
|
|
|
def yolov5l(pretrained=False, channels=3, classes=80): |
|
"""YOLOv5-large model from https://github.com/ultralytics/yolov5 |
|
|
|
Arguments: |
|
pretrained (bool): load pretrained weights into the model, default=False |
|
channels (int): number of input channels, default=3 |
|
classes (int): number of model classes, default=80 |
|
|
|
Returns: |
|
pytorch model |
|
""" |
|
return create('yolov5l', pretrained, channels, classes) |
|
|
|
|
|
def yolov5x(pretrained=False, channels=3, classes=80): |
|
"""YOLOv5-xlarge model from https://github.com/ultralytics/yolov5 |
|
|
|
Arguments: |
|
pretrained (bool): load pretrained weights into the model, default=False |
|
channels (int): number of input channels, default=3 |
|
classes (int): number of model classes, default=80 |
|
|
|
Returns: |
|
pytorch model |
|
""" |
|
return create('yolov5x', pretrained, channels, classes) |
|
|