|
import argparse |
|
import json |
|
|
|
import yaml |
|
from torch.utils.data import DataLoader |
|
|
|
from utils.datasets import * |
|
from utils.utils import * |
|
|
|
|
|
def test(data, |
|
weights=None, |
|
batch_size=16, |
|
imgsz=640, |
|
conf_thres=0.001, |
|
iou_thres=0.6, |
|
save_json=False, |
|
single_cls=False, |
|
augment=False, |
|
model=None, |
|
dataloader=None, |
|
fast=False, |
|
verbose=False): |
|
|
|
if model is None: |
|
device = torch_utils.select_device(opt.device, batch_size=batch_size) |
|
|
|
|
|
for f in glob.glob('test_batch*.jpg'): |
|
os.remove(f) |
|
|
|
|
|
google_utils.attempt_download(weights) |
|
model = torch.load(weights, map_location=device)['model'] |
|
torch_utils.model_info(model) |
|
|
|
|
|
|
|
model.to(device) |
|
|
|
if device.type != 'cpu' and torch.cuda.device_count() > 1: |
|
model = nn.DataParallel(model) |
|
|
|
training = False |
|
else: |
|
device = next(model.parameters()).device |
|
training = True |
|
|
|
|
|
with open(data) as f: |
|
data = yaml.load(f, Loader=yaml.FullLoader) |
|
nc = 1 if single_cls else int(data['nc']) |
|
iouv = torch.linspace(0.5, 0.95, 10).to(device) |
|
|
|
niou = iouv.numel() |
|
|
|
|
|
if dataloader is None: |
|
fast |= conf_thres > 0.001 |
|
path = data['test'] if opt.task == 'test' else data['val'] |
|
dataset = LoadImagesAndLabels(path, |
|
imgsz, |
|
batch_size, |
|
rect=True, |
|
single_cls=opt.single_cls, |
|
pad=0.0 if fast else 0.5) |
|
batch_size = min(batch_size, len(dataset)) |
|
nw = min([os.cpu_count(), batch_size if batch_size > 1 else 0, 8]) |
|
dataloader = DataLoader(dataset, |
|
batch_size=batch_size, |
|
num_workers=nw, |
|
pin_memory=True, |
|
collate_fn=dataset.collate_fn) |
|
|
|
seen = 0 |
|
model.eval() |
|
_ = model(torch.zeros((1, 3, imgsz, imgsz), device=device)) if device.type != 'cpu' else None |
|
names = model.names if hasattr(model, 'names') else model.module.names |
|
coco91class = coco80_to_coco91_class() |
|
s = ('%20s' + '%12s' * 6) % ('Class', 'Images', 'Targets', 'P', 'R', '[email protected]', '[email protected]:.95') |
|
p, r, f1, mp, mr, map50, map, t0, t1 = 0., 0., 0., 0., 0., 0., 0., 0., 0. |
|
loss = torch.zeros(3, device=device) |
|
jdict, stats, ap, ap_class = [], [], [], [] |
|
for batch_i, (imgs, targets, paths, shapes) in enumerate(tqdm(dataloader, desc=s)): |
|
imgs = imgs.to(device).float() / 255.0 |
|
targets = targets.to(device) |
|
nb, _, height, width = imgs.shape |
|
whwh = torch.Tensor([width, height, width, height]).to(device) |
|
|
|
|
|
with torch.no_grad(): |
|
|
|
t = torch_utils.time_synchronized() |
|
inf_out, train_out = model(imgs, augment=augment) |
|
t0 += torch_utils.time_synchronized() - t |
|
|
|
|
|
if training: |
|
loss += compute_loss(train_out, targets, model)[1][:3] |
|
|
|
|
|
t = torch_utils.time_synchronized() |
|
output = non_max_suppression(inf_out, conf_thres=conf_thres, iou_thres=iou_thres, fast=fast) |
|
t1 += torch_utils.time_synchronized() - t |
|
|
|
|
|
for si, pred in enumerate(output): |
|
labels = targets[targets[:, 0] == si, 1:] |
|
nl = len(labels) |
|
tcls = labels[:, 0].tolist() if nl else [] |
|
seen += 1 |
|
|
|
if pred is None: |
|
if nl: |
|
stats.append((torch.zeros(0, niou, dtype=torch.bool), torch.Tensor(), torch.Tensor(), tcls)) |
|
continue |
|
|
|
|
|
|
|
|
|
|
|
|
|
clip_coords(pred, (height, width)) |
|
|
|
|
|
if save_json: |
|
|
|
image_id = int(Path(paths[si]).stem.split('_')[-1]) |
|
box = pred[:, :4].clone() |
|
scale_coords(imgs[si].shape[1:], box, shapes[si][0], shapes[si][1]) |
|
box = xyxy2xywh(box) |
|
box[:, :2] -= box[:, 2:] / 2 |
|
for p, b in zip(pred.tolist(), box.tolist()): |
|
jdict.append({'image_id': image_id, |
|
'category_id': coco91class[int(p[5])], |
|
'bbox': [round(x, 3) for x in b], |
|
'score': round(p[4], 5)}) |
|
|
|
|
|
correct = torch.zeros(pred.shape[0], niou, dtype=torch.bool, device=device) |
|
if nl: |
|
detected = [] |
|
tcls_tensor = labels[:, 0] |
|
|
|
|
|
tbox = xywh2xyxy(labels[:, 1:5]) * whwh |
|
|
|
|
|
for cls in torch.unique(tcls_tensor): |
|
ti = (cls == tcls_tensor).nonzero().view(-1) |
|
pi = (cls == pred[:, 5]).nonzero().view(-1) |
|
|
|
|
|
if pi.shape[0]: |
|
|
|
ious, i = box_iou(pred[pi, :4], tbox[ti]).max(1) |
|
|
|
|
|
for j in (ious > iouv[0]).nonzero(): |
|
d = ti[i[j]] |
|
if d not in detected: |
|
detected.append(d) |
|
correct[pi[j]] = ious[j] > iouv |
|
if len(detected) == nl: |
|
break |
|
|
|
|
|
stats.append((correct.cpu(), pred[:, 4].cpu(), pred[:, 5].cpu(), tcls)) |
|
|
|
|
|
if batch_i < 1: |
|
f = 'test_batch%g_gt.jpg' % batch_i |
|
plot_images(imgs, targets, paths, f, names) |
|
f = 'test_batch%g_pred.jpg' % batch_i |
|
plot_images(imgs, output_to_target(output, width, height), paths, f, names) |
|
|
|
|
|
stats = [np.concatenate(x, 0) for x in zip(*stats)] |
|
if len(stats): |
|
p, r, ap, f1, ap_class = ap_per_class(*stats) |
|
p, r, ap50, ap = p[:, 0], r[:, 0], ap[:, 0], ap.mean(1) |
|
mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean() |
|
nt = np.bincount(stats[3].astype(np.int64), minlength=nc) |
|
else: |
|
nt = torch.zeros(1) |
|
|
|
|
|
pf = '%20s' + '%12.3g' * 6 |
|
print(pf % ('all', seen, nt.sum(), mp, mr, map50, map)) |
|
|
|
|
|
if verbose and nc > 1 and len(stats): |
|
for i, c in enumerate(ap_class): |
|
print(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i])) |
|
|
|
|
|
t = tuple(x / seen * 1E3 for x in (t0, t1, t0 + t1)) + (imgsz, imgsz, batch_size) |
|
if not training: |
|
print('Speed: %.1f/%.1f/%.1f ms inference/NMS/total per %gx%g image at batch-size %g' % t) |
|
|
|
|
|
if save_json and map50 and len(jdict): |
|
imgIds = [int(Path(x).stem.split('_')[-1]) for x in dataloader.dataset.img_files] |
|
f = 'detections_val2017_%s_results.json' % \ |
|
(weights.split(os.sep)[-1].replace('.pt', '') if weights else '') |
|
print('\nCOCO mAP with pycocotools... saving %s...' % f) |
|
with open(f, 'w') as file: |
|
json.dump(jdict, file) |
|
|
|
try: |
|
from pycocotools.coco import COCO |
|
from pycocotools.cocoeval import COCOeval |
|
|
|
|
|
cocoGt = COCO(glob.glob('../coco/annotations/instances_val*.json')[0]) |
|
cocoDt = cocoGt.loadRes(f) |
|
|
|
cocoEval = COCOeval(cocoGt, cocoDt, 'bbox') |
|
cocoEval.params.imgIds = imgIds |
|
cocoEval.evaluate() |
|
cocoEval.accumulate() |
|
cocoEval.summarize() |
|
map, map50 = cocoEval.stats[:2] |
|
except: |
|
print('WARNING: pycocotools must be installed with numpy==1.17 to run correctly. ' |
|
'See https://github.com/cocodataset/cocoapi/issues/356') |
|
|
|
|
|
maps = np.zeros(nc) + map |
|
for i, c in enumerate(ap_class): |
|
maps[c] = ap[i] |
|
return (mp, mr, map50, map, *(loss.cpu() / len(dataloader)).tolist()), maps, t |
|
|
|
|
|
if __name__ == '__main__': |
|
parser = argparse.ArgumentParser(prog='test.py') |
|
parser.add_argument('--weights', type=str, default='weights/yolov5s.pt', help='model.pt path') |
|
parser.add_argument('--data', type=str, default='data/coco.yaml', help='*.data path') |
|
parser.add_argument('--batch-size', type=int, default=16, help='size of each image batch') |
|
parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)') |
|
parser.add_argument('--conf-thres', type=float, default=0.001, help='object confidence threshold') |
|
parser.add_argument('--iou-thres', type=float, default=0.65, help='IOU threshold for NMS') |
|
parser.add_argument('--save-json', action='store_true', help='save a cocoapi-compatible JSON results file') |
|
parser.add_argument('--task', default='val', help="'val', 'test', 'study'") |
|
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') |
|
parser.add_argument('--single-cls', action='store_true', help='treat as single-class dataset') |
|
parser.add_argument('--augment', action='store_true', help='augmented inference') |
|
parser.add_argument('--verbose', action='store_true', help='report mAP by class') |
|
opt = parser.parse_args() |
|
opt.save_json = opt.save_json or opt.data.endswith('coco.yaml') |
|
opt.data = glob.glob('./**/' + opt.data, recursive=True)[0] |
|
print(opt) |
|
|
|
|
|
if opt.task in ['val', 'test']: |
|
test(opt.data, |
|
opt.weights, |
|
opt.batch_size, |
|
opt.img_size, |
|
opt.conf_thres, |
|
opt.iou_thres, |
|
opt.save_json, |
|
opt.single_cls, |
|
opt.augment) |
|
|
|
elif opt.task == 'study': |
|
for weights in ['yolov5s.pt', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt', 'yolov3-spp.pt']: |
|
f = 'study_%s_%s.txt' % (Path(opt.data).stem, Path(weights).stem) |
|
x = list(range(256, 1024, 64)) |
|
y = [] |
|
for i in x: |
|
print('\nRunning %s point %s...' % (f, i)) |
|
r, _, t = test(opt.data, weights, opt.batch_size, i, opt.conf_thres, opt.iou_thres, opt.save_json) |
|
y.append(r + t) |
|
np.savetxt(f, y, fmt='%10.4g') |
|
plot_study_txt(f, x) |
|
|