# YOLOv5 π by Ultralytics, GPL-3.0 license | |
# Start FROM Nvidia PyTorch image https://ngc.nvidia.com/catalog/containers/nvidia:pytorch | |
FROM nvcr.io/nvidia/pytorch:21.05-py3 | |
# Install linux packages | |
RUN apt update && apt install -y zip htop screen libgl1-mesa-glx | |
# Install python dependencies | |
COPY requirements.txt . | |
RUN python -m pip install --upgrade pip | |
RUN pip uninstall -y nvidia-tensorboard nvidia-tensorboard-plugin-dlprof | |
RUN pip install --no-cache -r requirements.txt coremltools onnx gsutil notebook wandb>=0.12.2 | |
RUN pip install --no-cache -U torch torchvision numpy | |
# RUN pip install --no-cache torch==1.9.0+cu111 torchvision==0.10.0+cu111 -f https://download.pytorch.org/whl/torch_stable.html | |
# Create working directory | |
RUN mkdir -p /usr/src/app | |
WORKDIR /usr/src/app | |
# Copy contents | |
COPY . /usr/src/app | |
# Set environment variables | |
ENV HOME=/usr/src/app | |
# Usage Examples ------------------------------------------------------------------------------------------------------- | |
# Build and Push | |
# t=ultralytics/yolov5:latest && sudo docker build -t $t . && sudo docker push $t | |
# Pull and Run | |
# t=ultralytics/yolov5:latest && sudo docker pull $t && sudo docker run -it --ipc=host --gpus all $t | |
# Pull and Run with local directory access | |
# t=ultralytics/yolov5:latest && sudo docker pull $t && sudo docker run -it --ipc=host --gpus all -v "$(pwd)"/datasets:/usr/src/datasets $t | |
# Kill all | |
# sudo docker kill $(sudo docker ps -q) | |
# Kill all image-based | |
# sudo docker kill $(sudo docker ps -qa --filter ancestor=ultralytics/yolov5:latest) | |
# Bash into running container | |
# sudo docker exec -it 5a9b5863d93d bash | |
# Bash into stopped container | |
# id=$(sudo docker ps -qa) && sudo docker start $id && sudo docker exec -it $id bash | |
# Clean up | |
# docker system prune -a --volumes | |
# Update Ubuntu drivers | |
# https://www.maketecheasier.com/install-nvidia-drivers-ubuntu/ | |
# DDP test | |
# python -m torch.distributed.run --nproc_per_node 2 --master_port 1 train.py --epochs 3 | |