|
|
|
|
|
import random |
|
|
|
import numpy as np |
|
import torch |
|
import yaml |
|
from tqdm import tqdm |
|
|
|
from utils.general import colorstr |
|
|
|
|
|
def check_anchor_order(m): |
|
|
|
a = m.anchor_grid.prod(-1).view(-1) |
|
da = a[-1] - a[0] |
|
ds = m.stride[-1] - m.stride[0] |
|
if da.sign() != ds.sign(): |
|
print('Reversing anchor order') |
|
m.anchors[:] = m.anchors.flip(0) |
|
m.anchor_grid[:] = m.anchor_grid.flip(0) |
|
|
|
|
|
def check_anchors(dataset, model, thr=4.0, imgsz=640): |
|
|
|
prefix = colorstr('autoanchor: ') |
|
print(f'\n{prefix}Analyzing anchors... ', end='') |
|
m = model.module.model[-1] if hasattr(model, 'module') else model.model[-1] |
|
shapes = imgsz * dataset.shapes / dataset.shapes.max(1, keepdims=True) |
|
scale = np.random.uniform(0.9, 1.1, size=(shapes.shape[0], 1)) |
|
wh = torch.tensor(np.concatenate([l[:, 3:5] * s for s, l in zip(shapes * scale, dataset.labels)])).float() |
|
|
|
def metric(k): |
|
r = wh[:, None] / k[None] |
|
x = torch.min(r, 1. / r).min(2)[0] |
|
best = x.max(1)[0] |
|
aat = (x > 1. / thr).float().sum(1).mean() |
|
bpr = (best > 1. / thr).float().mean() |
|
return bpr, aat |
|
|
|
anchors = m.anchor_grid.clone().cpu().view(-1, 2) |
|
bpr, aat = metric(anchors) |
|
print(f'anchors/target = {aat:.2f}, Best Possible Recall (BPR) = {bpr:.4f}', end='') |
|
if bpr < 0.98: |
|
print('. Attempting to improve anchors, please wait...') |
|
na = m.anchor_grid.numel() // 2 |
|
try: |
|
anchors = kmean_anchors(dataset, n=na, img_size=imgsz, thr=thr, gen=1000, verbose=False) |
|
except Exception as e: |
|
print(f'{prefix}ERROR: {e}') |
|
new_bpr = metric(anchors)[0] |
|
if new_bpr > bpr: |
|
anchors = torch.tensor(anchors, device=m.anchors.device).type_as(m.anchors) |
|
m.anchor_grid[:] = anchors.clone().view_as(m.anchor_grid) |
|
m.anchors[:] = anchors.clone().view_as(m.anchors) / m.stride.to(m.anchors.device).view(-1, 1, 1) |
|
check_anchor_order(m) |
|
print(f'{prefix}New anchors saved to model. Update model *.yaml to use these anchors in the future.') |
|
else: |
|
print(f'{prefix}Original anchors better than new anchors. Proceeding with original anchors.') |
|
print('') |
|
|
|
|
|
def kmean_anchors(path='./data/coco128.yaml', n=9, img_size=640, thr=4.0, gen=1000, verbose=True): |
|
""" Creates kmeans-evolved anchors from training dataset |
|
|
|
Arguments: |
|
path: path to dataset *.yaml, or a loaded dataset |
|
n: number of anchors |
|
img_size: image size used for training |
|
thr: anchor-label wh ratio threshold hyperparameter hyp['anchor_t'] used for training, default=4.0 |
|
gen: generations to evolve anchors using genetic algorithm |
|
verbose: print all results |
|
|
|
Return: |
|
k: kmeans evolved anchors |
|
|
|
Usage: |
|
from utils.autoanchor import *; _ = kmean_anchors() |
|
""" |
|
from scipy.cluster.vq import kmeans |
|
|
|
thr = 1. / thr |
|
prefix = colorstr('autoanchor: ') |
|
|
|
def metric(k, wh): |
|
r = wh[:, None] / k[None] |
|
x = torch.min(r, 1. / r).min(2)[0] |
|
|
|
return x, x.max(1)[0] |
|
|
|
def anchor_fitness(k): |
|
_, best = metric(torch.tensor(k, dtype=torch.float32), wh) |
|
return (best * (best > thr).float()).mean() |
|
|
|
def print_results(k): |
|
k = k[np.argsort(k.prod(1))] |
|
x, best = metric(k, wh0) |
|
bpr, aat = (best > thr).float().mean(), (x > thr).float().mean() * n |
|
print(f'{prefix}thr={thr:.2f}: {bpr:.4f} best possible recall, {aat:.2f} anchors past thr') |
|
print(f'{prefix}n={n}, img_size={img_size}, metric_all={x.mean():.3f}/{best.mean():.3f}-mean/best, ' |
|
f'past_thr={x[x > thr].mean():.3f}-mean: ', end='') |
|
for i, x in enumerate(k): |
|
print('%i,%i' % (round(x[0]), round(x[1])), end=', ' if i < len(k) - 1 else '\n') |
|
return k |
|
|
|
if isinstance(path, str): |
|
with open(path) as f: |
|
data_dict = yaml.safe_load(f) |
|
from utils.datasets import LoadImagesAndLabels |
|
dataset = LoadImagesAndLabels(data_dict['train'], augment=True, rect=True) |
|
else: |
|
dataset = path |
|
|
|
|
|
shapes = img_size * dataset.shapes / dataset.shapes.max(1, keepdims=True) |
|
wh0 = np.concatenate([l[:, 3:5] * s for s, l in zip(shapes, dataset.labels)]) |
|
|
|
|
|
i = (wh0 < 3.0).any(1).sum() |
|
if i: |
|
print(f'{prefix}WARNING: Extremely small objects found. {i} of {len(wh0)} labels are < 3 pixels in size.') |
|
wh = wh0[(wh0 >= 2.0).any(1)] |
|
|
|
|
|
|
|
print(f'{prefix}Running kmeans for {n} anchors on {len(wh)} points...') |
|
s = wh.std(0) |
|
k, dist = kmeans(wh / s, n, iter=30) |
|
assert len(k) == n, print(f'{prefix}ERROR: scipy.cluster.vq.kmeans requested {n} points but returned only {len(k)}') |
|
k *= s |
|
wh = torch.tensor(wh, dtype=torch.float32) |
|
wh0 = torch.tensor(wh0, dtype=torch.float32) |
|
k = print_results(k) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
npr = np.random |
|
f, sh, mp, s = anchor_fitness(k), k.shape, 0.9, 0.1 |
|
pbar = tqdm(range(gen), desc=f'{prefix}Evolving anchors with Genetic Algorithm:') |
|
for _ in pbar: |
|
v = np.ones(sh) |
|
while (v == 1).all(): |
|
v = ((npr.random(sh) < mp) * random.random() * npr.randn(*sh) * s + 1).clip(0.3, 3.0) |
|
kg = (k.copy() * v).clip(min=2.0) |
|
fg = anchor_fitness(kg) |
|
if fg > f: |
|
f, k = fg, kg.copy() |
|
pbar.desc = f'{prefix}Evolving anchors with Genetic Algorithm: fitness = {f:.4f}' |
|
if verbose: |
|
print_results(k) |
|
|
|
return print_results(k) |
|
|