|
|
|
""" |
|
Run YOLOv5 benchmarks on all supported export formats |
|
|
|
Format | `export.py --include` | Model |
|
--- | --- | --- |
|
PyTorch | - | yolov5s.pt |
|
TorchScript | `torchscript` | yolov5s.torchscript |
|
ONNX | `onnx` | yolov5s.onnx |
|
OpenVINO | `openvino` | yolov5s_openvino_model/ |
|
TensorRT | `engine` | yolov5s.engine |
|
CoreML | `coreml` | yolov5s.mlmodel |
|
TensorFlow SavedModel | `saved_model` | yolov5s_saved_model/ |
|
TensorFlow GraphDef | `pb` | yolov5s.pb |
|
TensorFlow Lite | `tflite` | yolov5s.tflite |
|
TensorFlow Edge TPU | `edgetpu` | yolov5s_edgetpu.tflite |
|
TensorFlow.js | `tfjs` | yolov5s_web_model/ |
|
|
|
Requirements: |
|
$ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime openvino-dev tensorflow-cpu # CPU |
|
$ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime-gpu openvino-dev tensorflow # GPU |
|
|
|
Usage: |
|
$ python utils/benchmarks.py --weights yolov5s.pt --img 640 |
|
""" |
|
|
|
import argparse |
|
import sys |
|
import time |
|
from pathlib import Path |
|
|
|
import pandas as pd |
|
|
|
FILE = Path(__file__).resolve() |
|
ROOT = FILE.parents[1] |
|
if str(ROOT) not in sys.path: |
|
sys.path.append(str(ROOT)) |
|
|
|
|
|
import export |
|
import val |
|
from utils import notebook_init |
|
from utils.general import LOGGER, print_args |
|
|
|
|
|
def run(weights=ROOT / 'yolov5s.pt', |
|
imgsz=640, |
|
batch_size=1, |
|
data=ROOT / 'data/coco128.yaml', |
|
): |
|
y, t = [], time.time() |
|
formats = export.export_formats() |
|
for i, (name, f, suffix) in formats.iterrows(): |
|
try: |
|
w = weights if f == '-' else export.run(weights=weights, imgsz=[imgsz], include=[f], device='cpu')[-1] |
|
assert suffix in str(w), 'export failed' |
|
result = val.run(data, w, batch_size, imgsz=imgsz, plots=False, device='cpu', task='benchmark') |
|
metrics = result[0] |
|
speeds = result[2] |
|
y.append([name, metrics[3], speeds[1]]) |
|
except Exception as e: |
|
LOGGER.warning(f'WARNING: Benchmark failure for {name}: {e}') |
|
y.append([name, None, None]) |
|
|
|
|
|
LOGGER.info('\n') |
|
parse_opt() |
|
notebook_init() |
|
py = pd.DataFrame(y, columns=['Format', '[email protected]:0.95', 'Inference time (ms)']) |
|
LOGGER.info(f'\nBenchmarks complete ({time.time() - t:.2f}s)') |
|
LOGGER.info(str(py)) |
|
return py |
|
|
|
|
|
def parse_opt(): |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('--weights', type=str, default=ROOT / 'yolov5s.pt', help='weights path') |
|
parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='inference size (pixels)') |
|
parser.add_argument('--batch-size', type=int, default=1, help='batch size') |
|
parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path') |
|
opt = parser.parse_args() |
|
print_args(FILE.stem, opt) |
|
return opt |
|
|
|
|
|
def main(opt): |
|
run(**vars(opt)) |
|
|
|
|
|
if __name__ == "__main__": |
|
opt = parse_opt() |
|
main(opt) |
|
|