|
|
|
""" |
|
Run inference on images, videos, directories, streams, etc. |
|
|
|
Usage: |
|
$ python path/to/detect.py --source path/to/img.jpg --weights yolov5s.pt --img 640 |
|
""" |
|
|
|
import argparse |
|
import sys |
|
from pathlib import Path |
|
|
|
import cv2 |
|
import numpy as np |
|
import torch |
|
import torch.backends.cudnn as cudnn |
|
|
|
FILE = Path(__file__).resolve() |
|
ROOT = FILE.parents[0] |
|
if str(ROOT) not in sys.path: |
|
sys.path.append(str(ROOT)) |
|
ROOT = ROOT.relative_to(Path.cwd()) |
|
|
|
from models.experimental import attempt_load |
|
from utils.datasets import LoadImages, LoadStreams |
|
from utils.general import apply_classifier, check_img_size, check_imshow, check_requirements, check_suffix, colorstr, \ |
|
increment_path, non_max_suppression, print_args, save_one_box, scale_coords, set_logging, \ |
|
strip_optimizer, xyxy2xywh |
|
from utils.plots import Annotator, colors |
|
from utils.torch_utils import load_classifier, select_device, time_sync |
|
|
|
|
|
@torch.no_grad() |
|
def run(weights=ROOT / 'yolov5s.pt', |
|
source=ROOT / 'data/images', |
|
imgsz=640, |
|
conf_thres=0.25, |
|
iou_thres=0.45, |
|
max_det=1000, |
|
device='', |
|
view_img=False, |
|
save_txt=False, |
|
save_conf=False, |
|
save_crop=False, |
|
nosave=False, |
|
classes=None, |
|
agnostic_nms=False, |
|
augment=False, |
|
visualize=False, |
|
update=False, |
|
project=ROOT / 'runs/detect', |
|
name='exp', |
|
exist_ok=False, |
|
line_thickness=3, |
|
hide_labels=False, |
|
hide_conf=False, |
|
half=False, |
|
): |
|
source = str(source) |
|
save_img = not nosave and not source.endswith('.txt') |
|
webcam = source.isnumeric() or source.endswith('.txt') or source.lower().startswith( |
|
('rtsp://', 'rtmp://', 'http://', 'https://')) |
|
|
|
|
|
save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) |
|
(save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) |
|
|
|
|
|
set_logging() |
|
device = select_device(device) |
|
half &= device.type != 'cpu' |
|
|
|
|
|
w = weights[0] if isinstance(weights, list) else weights |
|
classify, suffix, suffixes = False, Path(w).suffix.lower(), ['.pt', '.onnx', '.tflite', '.pb', ''] |
|
check_suffix(w, suffixes) |
|
pt, onnx, tflite, pb, saved_model = (suffix == x for x in suffixes) |
|
stride, names = 64, [f'class{i}' for i in range(1000)] |
|
if pt: |
|
model = attempt_load(weights, map_location=device) |
|
stride = int(model.stride.max()) |
|
names = model.module.names if hasattr(model, 'module') else model.names |
|
if half: |
|
model.half() |
|
if classify: |
|
modelc = load_classifier(name='resnet50', n=2) |
|
modelc.load_state_dict(torch.load('resnet50.pt', map_location=device)['model']).to(device).eval() |
|
elif onnx: |
|
check_requirements(('onnx', 'onnxruntime')) |
|
import onnxruntime |
|
session = onnxruntime.InferenceSession(w, None) |
|
else: |
|
check_requirements(('tensorflow>=2.4.1',)) |
|
import tensorflow as tf |
|
if pb: |
|
def wrap_frozen_graph(gd, inputs, outputs): |
|
x = tf.compat.v1.wrap_function(lambda: tf.compat.v1.import_graph_def(gd, name=""), []) |
|
return x.prune(tf.nest.map_structure(x.graph.as_graph_element, inputs), |
|
tf.nest.map_structure(x.graph.as_graph_element, outputs)) |
|
|
|
graph_def = tf.Graph().as_graph_def() |
|
graph_def.ParseFromString(open(w, 'rb').read()) |
|
frozen_func = wrap_frozen_graph(gd=graph_def, inputs="x:0", outputs="Identity:0") |
|
elif saved_model: |
|
model = tf.keras.models.load_model(w) |
|
elif tflite: |
|
interpreter = tf.lite.Interpreter(model_path=w) |
|
interpreter.allocate_tensors() |
|
input_details = interpreter.get_input_details() |
|
output_details = interpreter.get_output_details() |
|
int8 = input_details[0]['dtype'] == np.uint8 |
|
imgsz = check_img_size(imgsz, s=stride) |
|
|
|
|
|
if webcam: |
|
view_img = check_imshow() |
|
cudnn.benchmark = True |
|
dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt) |
|
bs = len(dataset) |
|
else: |
|
dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt) |
|
bs = 1 |
|
vid_path, vid_writer = [None] * bs, [None] * bs |
|
|
|
|
|
if pt and device.type != 'cpu': |
|
model(torch.zeros(1, 3, *imgsz).to(device).type_as(next(model.parameters()))) |
|
dt, seen = [0.0, 0.0, 0.0], 0 |
|
for path, img, im0s, vid_cap in dataset: |
|
t1 = time_sync() |
|
if onnx: |
|
img = img.astype('float32') |
|
else: |
|
img = torch.from_numpy(img).to(device) |
|
img = img.half() if half else img.float() |
|
img = img / 255.0 |
|
if len(img.shape) == 3: |
|
img = img[None] |
|
t2 = time_sync() |
|
dt[0] += t2 - t1 |
|
|
|
|
|
if pt: |
|
visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False |
|
pred = model(img, augment=augment, visualize=visualize)[0] |
|
elif onnx: |
|
pred = torch.tensor(session.run([session.get_outputs()[0].name], {session.get_inputs()[0].name: img})) |
|
else: |
|
imn = img.permute(0, 2, 3, 1).cpu().numpy() |
|
if pb: |
|
pred = frozen_func(x=tf.constant(imn)).numpy() |
|
elif saved_model: |
|
pred = model(imn, training=False).numpy() |
|
elif tflite: |
|
if int8: |
|
scale, zero_point = input_details[0]['quantization'] |
|
imn = (imn / scale + zero_point).astype(np.uint8) |
|
interpreter.set_tensor(input_details[0]['index'], imn) |
|
interpreter.invoke() |
|
pred = interpreter.get_tensor(output_details[0]['index']) |
|
if int8: |
|
scale, zero_point = output_details[0]['quantization'] |
|
pred = (pred.astype(np.float32) - zero_point) * scale |
|
pred[..., 0] *= imgsz[1] |
|
pred[..., 1] *= imgsz[0] |
|
pred[..., 2] *= imgsz[1] |
|
pred[..., 3] *= imgsz[0] |
|
pred = torch.tensor(pred) |
|
t3 = time_sync() |
|
dt[1] += t3 - t2 |
|
|
|
|
|
pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det) |
|
dt[2] += time_sync() - t3 |
|
|
|
|
|
if classify: |
|
pred = apply_classifier(pred, modelc, img, im0s) |
|
|
|
|
|
for i, det in enumerate(pred): |
|
seen += 1 |
|
if webcam: |
|
p, s, im0, frame = path[i], f'{i}: ', im0s[i].copy(), dataset.count |
|
else: |
|
p, s, im0, frame = path, '', im0s.copy(), getattr(dataset, 'frame', 0) |
|
|
|
p = Path(p) |
|
save_path = str(save_dir / p.name) |
|
txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') |
|
s += '%gx%g ' % img.shape[2:] |
|
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] |
|
imc = im0.copy() if save_crop else im0 |
|
annotator = Annotator(im0, line_width=line_thickness, example=str(names)) |
|
if len(det): |
|
|
|
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round() |
|
|
|
|
|
for c in det[:, -1].unique(): |
|
n = (det[:, -1] == c).sum() |
|
s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " |
|
|
|
|
|
for *xyxy, conf, cls in reversed(det): |
|
if save_txt: |
|
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() |
|
line = (cls, *xywh, conf) if save_conf else (cls, *xywh) |
|
with open(txt_path + '.txt', 'a') as f: |
|
f.write(('%g ' * len(line)).rstrip() % line + '\n') |
|
|
|
if save_img or save_crop or view_img: |
|
c = int(cls) |
|
label = None if hide_labels else (names[c] if hide_conf else f'{names[c]} {conf:.2f}') |
|
annotator.box_label(xyxy, label, color=colors(c, True)) |
|
if save_crop: |
|
save_one_box(xyxy, imc, file=save_dir / 'crops' / names[c] / f'{p.stem}.jpg', BGR=True) |
|
|
|
|
|
print(f'{s}Done. ({t3 - t2:.3f}s)') |
|
|
|
|
|
im0 = annotator.result() |
|
if view_img: |
|
cv2.imshow(str(p), im0) |
|
cv2.waitKey(1) |
|
|
|
|
|
if save_img: |
|
if dataset.mode == 'image': |
|
cv2.imwrite(save_path, im0) |
|
else: |
|
if vid_path[i] != save_path: |
|
vid_path[i] = save_path |
|
if isinstance(vid_writer[i], cv2.VideoWriter): |
|
vid_writer[i].release() |
|
if vid_cap: |
|
fps = vid_cap.get(cv2.CAP_PROP_FPS) |
|
w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH)) |
|
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) |
|
else: |
|
fps, w, h = 30, im0.shape[1], im0.shape[0] |
|
save_path += '.mp4' |
|
vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h)) |
|
vid_writer[i].write(im0) |
|
|
|
|
|
t = tuple(x / seen * 1E3 for x in dt) |
|
print(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}' % t) |
|
if save_txt or save_img: |
|
s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else '' |
|
print(f"Results saved to {colorstr('bold', save_dir)}{s}") |
|
if update: |
|
strip_optimizer(weights) |
|
|
|
|
|
def parse_opt(): |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s.pt', help='model path(s)') |
|
parser.add_argument('--source', type=str, default=ROOT / 'data/images', help='file/dir/URL/glob, 0 for webcam') |
|
parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640], help='inference size h,w') |
|
parser.add_argument('--conf-thres', type=float, default=0.25, help='confidence threshold') |
|
parser.add_argument('--iou-thres', type=float, default=0.45, help='NMS IoU threshold') |
|
parser.add_argument('--max-det', type=int, default=1000, help='maximum detections per image') |
|
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') |
|
parser.add_argument('--view-img', action='store_true', help='show results') |
|
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt') |
|
parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels') |
|
parser.add_argument('--save-crop', action='store_true', help='save cropped prediction boxes') |
|
parser.add_argument('--nosave', action='store_true', help='do not save images/videos') |
|
parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --classes 0, or --classes 0 2 3') |
|
parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS') |
|
parser.add_argument('--augment', action='store_true', help='augmented inference') |
|
parser.add_argument('--visualize', action='store_true', help='visualize features') |
|
parser.add_argument('--update', action='store_true', help='update all models') |
|
parser.add_argument('--project', default=ROOT / 'runs/detect', help='save results to project/name') |
|
parser.add_argument('--name', default='exp', help='save results to project/name') |
|
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment') |
|
parser.add_argument('--line-thickness', default=3, type=int, help='bounding box thickness (pixels)') |
|
parser.add_argument('--hide-labels', default=False, action='store_true', help='hide labels') |
|
parser.add_argument('--hide-conf', default=False, action='store_true', help='hide confidences') |
|
parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference') |
|
opt = parser.parse_args() |
|
opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1 |
|
print_args(FILE.stem, opt) |
|
return opt |
|
|
|
|
|
def main(opt): |
|
check_requirements(exclude=('tensorboard', 'thop')) |
|
run(**vars(opt)) |
|
|
|
|
|
if __name__ == "__main__": |
|
opt = parse_opt() |
|
main(opt) |
|
|