|
|
|
|
|
import glob |
|
import hashlib |
|
import json |
|
import logging |
|
import math |
|
import os |
|
import random |
|
import shutil |
|
import time |
|
from itertools import repeat |
|
from multiprocessing.pool import ThreadPool, Pool |
|
from pathlib import Path |
|
from threading import Thread |
|
|
|
import cv2 |
|
import numpy as np |
|
import torch |
|
import torch.nn.functional as F |
|
import yaml |
|
from PIL import Image, ExifTags |
|
from torch.utils.data import Dataset |
|
from tqdm import tqdm |
|
|
|
from utils.general import check_requirements, check_file, check_dataset, xyxy2xywh, xywh2xyxy, xywhn2xyxy, xyn2xy, \ |
|
segment2box, segments2boxes, resample_segments, clean_str |
|
from utils.torch_utils import torch_distributed_zero_first |
|
|
|
|
|
help_url = 'https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data' |
|
img_formats = ['bmp', 'jpg', 'jpeg', 'png', 'tif', 'tiff', 'dng', 'webp', 'mpo'] |
|
vid_formats = ['mov', 'avi', 'mp4', 'mpg', 'mpeg', 'm4v', 'wmv', 'mkv'] |
|
num_threads = min(8, os.cpu_count()) |
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
for orientation in ExifTags.TAGS.keys(): |
|
if ExifTags.TAGS[orientation] == 'Orientation': |
|
break |
|
|
|
|
|
def get_hash(paths): |
|
|
|
size = sum(os.path.getsize(p) for p in paths if os.path.exists(p)) |
|
h = hashlib.md5(str(size).encode()) |
|
h.update(''.join(paths).encode()) |
|
return h.hexdigest() |
|
|
|
|
|
def exif_size(img): |
|
|
|
s = img.size |
|
try: |
|
rotation = dict(img._getexif().items())[orientation] |
|
if rotation == 6: |
|
s = (s[1], s[0]) |
|
elif rotation == 8: |
|
s = (s[1], s[0]) |
|
except: |
|
pass |
|
|
|
return s |
|
|
|
|
|
def create_dataloader(path, imgsz, batch_size, stride, single_cls=False, hyp=None, augment=False, cache=False, pad=0.0, |
|
rect=False, rank=-1, world_size=1, workers=8, image_weights=False, quad=False, prefix=''): |
|
|
|
with torch_distributed_zero_first(rank): |
|
dataset = LoadImagesAndLabels(path, imgsz, batch_size, |
|
augment=augment, |
|
hyp=hyp, |
|
rect=rect, |
|
cache_images=cache, |
|
single_cls=single_cls, |
|
stride=int(stride), |
|
pad=pad, |
|
image_weights=image_weights, |
|
prefix=prefix) |
|
|
|
batch_size = min(batch_size, len(dataset)) |
|
nw = min([os.cpu_count() // world_size, batch_size if batch_size > 1 else 0, workers]) |
|
sampler = torch.utils.data.distributed.DistributedSampler(dataset) if rank != -1 else None |
|
loader = torch.utils.data.DataLoader if image_weights else InfiniteDataLoader |
|
|
|
dataloader = loader(dataset, |
|
batch_size=batch_size, |
|
num_workers=nw, |
|
sampler=sampler, |
|
pin_memory=True, |
|
collate_fn=LoadImagesAndLabels.collate_fn4 if quad else LoadImagesAndLabels.collate_fn) |
|
return dataloader, dataset |
|
|
|
|
|
class InfiniteDataLoader(torch.utils.data.dataloader.DataLoader): |
|
""" Dataloader that reuses workers |
|
|
|
Uses same syntax as vanilla DataLoader |
|
""" |
|
|
|
def __init__(self, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
object.__setattr__(self, 'batch_sampler', _RepeatSampler(self.batch_sampler)) |
|
self.iterator = super().__iter__() |
|
|
|
def __len__(self): |
|
return len(self.batch_sampler.sampler) |
|
|
|
def __iter__(self): |
|
for i in range(len(self)): |
|
yield next(self.iterator) |
|
|
|
|
|
class _RepeatSampler(object): |
|
""" Sampler that repeats forever |
|
|
|
Args: |
|
sampler (Sampler) |
|
""" |
|
|
|
def __init__(self, sampler): |
|
self.sampler = sampler |
|
|
|
def __iter__(self): |
|
while True: |
|
yield from iter(self.sampler) |
|
|
|
|
|
class LoadImages: |
|
def __init__(self, path, img_size=640, stride=32): |
|
p = str(Path(path).absolute()) |
|
if '*' in p: |
|
files = sorted(glob.glob(p, recursive=True)) |
|
elif os.path.isdir(p): |
|
files = sorted(glob.glob(os.path.join(p, '*.*'))) |
|
elif os.path.isfile(p): |
|
files = [p] |
|
else: |
|
raise Exception(f'ERROR: {p} does not exist') |
|
|
|
images = [x for x in files if x.split('.')[-1].lower() in img_formats] |
|
videos = [x for x in files if x.split('.')[-1].lower() in vid_formats] |
|
ni, nv = len(images), len(videos) |
|
|
|
self.img_size = img_size |
|
self.stride = stride |
|
self.files = images + videos |
|
self.nf = ni + nv |
|
self.video_flag = [False] * ni + [True] * nv |
|
self.mode = 'image' |
|
if any(videos): |
|
self.new_video(videos[0]) |
|
else: |
|
self.cap = None |
|
assert self.nf > 0, f'No images or videos found in {p}. ' \ |
|
f'Supported formats are:\nimages: {img_formats}\nvideos: {vid_formats}' |
|
|
|
def __iter__(self): |
|
self.count = 0 |
|
return self |
|
|
|
def __next__(self): |
|
if self.count == self.nf: |
|
raise StopIteration |
|
path = self.files[self.count] |
|
|
|
if self.video_flag[self.count]: |
|
|
|
self.mode = 'video' |
|
ret_val, img0 = self.cap.read() |
|
if not ret_val: |
|
self.count += 1 |
|
self.cap.release() |
|
if self.count == self.nf: |
|
raise StopIteration |
|
else: |
|
path = self.files[self.count] |
|
self.new_video(path) |
|
ret_val, img0 = self.cap.read() |
|
|
|
self.frame += 1 |
|
print(f'video {self.count + 1}/{self.nf} ({self.frame}/{self.frames}) {path}: ', end='') |
|
|
|
else: |
|
|
|
self.count += 1 |
|
img0 = cv2.imread(path) |
|
assert img0 is not None, 'Image Not Found ' + path |
|
print(f'image {self.count}/{self.nf} {path}: ', end='') |
|
|
|
|
|
img = letterbox(img0, self.img_size, stride=self.stride)[0] |
|
|
|
|
|
img = img[:, :, ::-1].transpose(2, 0, 1) |
|
img = np.ascontiguousarray(img) |
|
|
|
return path, img, img0, self.cap |
|
|
|
def new_video(self, path): |
|
self.frame = 0 |
|
self.cap = cv2.VideoCapture(path) |
|
self.frames = int(self.cap.get(cv2.CAP_PROP_FRAME_COUNT)) |
|
|
|
def __len__(self): |
|
return self.nf |
|
|
|
|
|
class LoadWebcam: |
|
def __init__(self, pipe='0', img_size=640, stride=32): |
|
self.img_size = img_size |
|
self.stride = stride |
|
|
|
if pipe.isnumeric(): |
|
pipe = eval(pipe) |
|
|
|
|
|
|
|
|
|
self.pipe = pipe |
|
self.cap = cv2.VideoCapture(pipe) |
|
self.cap.set(cv2.CAP_PROP_BUFFERSIZE, 3) |
|
|
|
def __iter__(self): |
|
self.count = -1 |
|
return self |
|
|
|
def __next__(self): |
|
self.count += 1 |
|
if cv2.waitKey(1) == ord('q'): |
|
self.cap.release() |
|
cv2.destroyAllWindows() |
|
raise StopIteration |
|
|
|
|
|
if self.pipe == 0: |
|
ret_val, img0 = self.cap.read() |
|
img0 = cv2.flip(img0, 1) |
|
else: |
|
n = 0 |
|
while True: |
|
n += 1 |
|
self.cap.grab() |
|
if n % 30 == 0: |
|
ret_val, img0 = self.cap.retrieve() |
|
if ret_val: |
|
break |
|
|
|
|
|
assert ret_val, f'Camera Error {self.pipe}' |
|
img_path = 'webcam.jpg' |
|
print(f'webcam {self.count}: ', end='') |
|
|
|
|
|
img = letterbox(img0, self.img_size, stride=self.stride)[0] |
|
|
|
|
|
img = img[:, :, ::-1].transpose(2, 0, 1) |
|
img = np.ascontiguousarray(img) |
|
|
|
return img_path, img, img0, None |
|
|
|
def __len__(self): |
|
return 0 |
|
|
|
|
|
class LoadStreams: |
|
def __init__(self, sources='streams.txt', img_size=640, stride=32): |
|
self.mode = 'stream' |
|
self.img_size = img_size |
|
self.stride = stride |
|
|
|
if os.path.isfile(sources): |
|
with open(sources, 'r') as f: |
|
sources = [x.strip() for x in f.read().strip().splitlines() if len(x.strip())] |
|
else: |
|
sources = [sources] |
|
|
|
n = len(sources) |
|
self.imgs, self.fps, self.frames, self.threads = [None] * n, [0] * n, [0] * n, [None] * n |
|
self.sources = [clean_str(x) for x in sources] |
|
for i, s in enumerate(sources): |
|
|
|
print(f'{i + 1}/{n}: {s}... ', end='') |
|
if 'youtube.com/' in s or 'youtu.be/' in s: |
|
check_requirements(('pafy', 'youtube_dl')) |
|
import pafy |
|
s = pafy.new(s).getbest(preftype="mp4").url |
|
s = eval(s) if s.isnumeric() else s |
|
cap = cv2.VideoCapture(s) |
|
assert cap.isOpened(), f'Failed to open {s}' |
|
w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) |
|
h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) |
|
self.fps[i] = max(cap.get(cv2.CAP_PROP_FPS) % 100, 0) or 30.0 |
|
self.frames[i] = max(int(cap.get(cv2.CAP_PROP_FRAME_COUNT)), 0) or float('inf') |
|
|
|
_, self.imgs[i] = cap.read() |
|
self.threads[i] = Thread(target=self.update, args=([i, cap]), daemon=True) |
|
print(f" success ({self.frames[i]} frames {w}x{h} at {self.fps[i]:.2f} FPS)") |
|
self.threads[i].start() |
|
print('') |
|
|
|
|
|
s = np.stack([letterbox(x, self.img_size, stride=self.stride)[0].shape for x in self.imgs], 0) |
|
self.rect = np.unique(s, axis=0).shape[0] == 1 |
|
if not self.rect: |
|
print('WARNING: Different stream shapes detected. For optimal performance supply similarly-shaped streams.') |
|
|
|
def update(self, i, cap): |
|
|
|
n, f = 0, self.frames[i] |
|
while cap.isOpened() and n < f: |
|
n += 1 |
|
|
|
cap.grab() |
|
if n % 4: |
|
success, im = cap.retrieve() |
|
self.imgs[i] = im if success else self.imgs[i] * 0 |
|
time.sleep(1 / self.fps[i]) |
|
|
|
def __iter__(self): |
|
self.count = -1 |
|
return self |
|
|
|
def __next__(self): |
|
self.count += 1 |
|
if not all(x.is_alive() for x in self.threads) or cv2.waitKey(1) == ord('q'): |
|
cv2.destroyAllWindows() |
|
raise StopIteration |
|
|
|
|
|
img0 = self.imgs.copy() |
|
img = [letterbox(x, self.img_size, auto=self.rect, stride=self.stride)[0] for x in img0] |
|
|
|
|
|
img = np.stack(img, 0) |
|
|
|
|
|
img = img[:, :, :, ::-1].transpose(0, 3, 1, 2) |
|
img = np.ascontiguousarray(img) |
|
|
|
return self.sources, img, img0, None |
|
|
|
def __len__(self): |
|
return 0 |
|
|
|
|
|
def img2label_paths(img_paths): |
|
|
|
sa, sb = os.sep + 'images' + os.sep, os.sep + 'labels' + os.sep |
|
return ['txt'.join(x.replace(sa, sb, 1).rsplit(x.split('.')[-1], 1)) for x in img_paths] |
|
|
|
|
|
class LoadImagesAndLabels(Dataset): |
|
def __init__(self, path, img_size=640, batch_size=16, augment=False, hyp=None, rect=False, image_weights=False, |
|
cache_images=False, single_cls=False, stride=32, pad=0.0, prefix=''): |
|
self.img_size = img_size |
|
self.augment = augment |
|
self.hyp = hyp |
|
self.image_weights = image_weights |
|
self.rect = False if image_weights else rect |
|
self.mosaic = self.augment and not self.rect |
|
self.mosaic_border = [-img_size // 2, -img_size // 2] |
|
self.stride = stride |
|
self.path = path |
|
|
|
try: |
|
f = [] |
|
for p in path if isinstance(path, list) else [path]: |
|
p = Path(p) |
|
if p.is_dir(): |
|
f += glob.glob(str(p / '**' / '*.*'), recursive=True) |
|
|
|
elif p.is_file(): |
|
with open(p, 'r') as t: |
|
t = t.read().strip().splitlines() |
|
parent = str(p.parent) + os.sep |
|
f += [x.replace('./', parent) if x.startswith('./') else x for x in t] |
|
|
|
else: |
|
raise Exception(f'{prefix}{p} does not exist') |
|
self.img_files = sorted([x.replace('/', os.sep) for x in f if x.split('.')[-1].lower() in img_formats]) |
|
|
|
assert self.img_files, f'{prefix}No images found' |
|
except Exception as e: |
|
raise Exception(f'{prefix}Error loading data from {path}: {e}\nSee {help_url}') |
|
|
|
|
|
self.label_files = img2label_paths(self.img_files) |
|
cache_path = (p if p.is_file() else Path(self.label_files[0]).parent).with_suffix('.cache') |
|
if cache_path.is_file(): |
|
cache, exists = torch.load(cache_path), True |
|
if cache['hash'] != get_hash(self.label_files + self.img_files): |
|
cache, exists = self.cache_labels(cache_path, prefix), False |
|
else: |
|
cache, exists = self.cache_labels(cache_path, prefix), False |
|
|
|
|
|
nf, nm, ne, nc, n = cache.pop('results') |
|
if exists: |
|
d = f"Scanning '{cache_path}' images and labels... {nf} found, {nm} missing, {ne} empty, {nc} corrupted" |
|
tqdm(None, desc=prefix + d, total=n, initial=n) |
|
assert nf > 0 or not augment, f'{prefix}No labels in {cache_path}. Can not train without labels. See {help_url}' |
|
|
|
|
|
cache.pop('hash') |
|
cache.pop('version') |
|
labels, shapes, self.segments = zip(*cache.values()) |
|
self.labels = list(labels) |
|
self.shapes = np.array(shapes, dtype=np.float64) |
|
self.img_files = list(cache.keys()) |
|
self.label_files = img2label_paths(cache.keys()) |
|
if single_cls: |
|
for x in self.labels: |
|
x[:, 0] = 0 |
|
|
|
n = len(shapes) |
|
bi = np.floor(np.arange(n) / batch_size).astype(np.int) |
|
nb = bi[-1] + 1 |
|
self.batch = bi |
|
self.n = n |
|
self.indices = range(n) |
|
|
|
|
|
if self.rect: |
|
|
|
s = self.shapes |
|
ar = s[:, 1] / s[:, 0] |
|
irect = ar.argsort() |
|
self.img_files = [self.img_files[i] for i in irect] |
|
self.label_files = [self.label_files[i] for i in irect] |
|
self.labels = [self.labels[i] for i in irect] |
|
self.shapes = s[irect] |
|
ar = ar[irect] |
|
|
|
|
|
shapes = [[1, 1]] * nb |
|
for i in range(nb): |
|
ari = ar[bi == i] |
|
mini, maxi = ari.min(), ari.max() |
|
if maxi < 1: |
|
shapes[i] = [maxi, 1] |
|
elif mini > 1: |
|
shapes[i] = [1, 1 / mini] |
|
|
|
self.batch_shapes = np.ceil(np.array(shapes) * img_size / stride + pad).astype(np.int) * stride |
|
|
|
|
|
self.imgs = [None] * n |
|
if cache_images: |
|
gb = 0 |
|
self.img_hw0, self.img_hw = [None] * n, [None] * n |
|
results = ThreadPool(num_threads).imap(lambda x: load_image(*x), zip(repeat(self), range(n))) |
|
pbar = tqdm(enumerate(results), total=n) |
|
for i, x in pbar: |
|
self.imgs[i], self.img_hw0[i], self.img_hw[i] = x |
|
gb += self.imgs[i].nbytes |
|
pbar.desc = f'{prefix}Caching images ({gb / 1E9:.1f}GB)' |
|
pbar.close() |
|
|
|
def cache_labels(self, path=Path('./labels.cache'), prefix=''): |
|
|
|
x = {} |
|
nm, nf, ne, nc = 0, 0, 0, 0 |
|
desc = f"{prefix}Scanning '{path.parent / path.stem}' images and labels..." |
|
with Pool(num_threads) as pool: |
|
pbar = tqdm(pool.imap_unordered(verify_image_label, zip(self.img_files, self.label_files, repeat(prefix))), |
|
desc=desc, total=len(self.img_files)) |
|
for im_file, l, shape, segments, nm_f, nf_f, ne_f, nc_f in pbar: |
|
nm += nm_f |
|
nf += nf_f |
|
ne += ne_f |
|
nc += nc_f |
|
if im_file: |
|
x[im_file] = [l, shape, segments] |
|
pbar.desc = f"{desc}{nf} found, {nm} missing, {ne} empty, {nc} corrupted" |
|
|
|
pbar.close() |
|
if nf == 0: |
|
logging.info(f'{prefix}WARNING: No labels found in {path}. See {help_url}') |
|
x['hash'] = get_hash(self.label_files + self.img_files) |
|
x['results'] = nf, nm, ne, nc, len(self.img_files) |
|
x['version'] = 0.2 |
|
try: |
|
torch.save(x, path) |
|
logging.info(f'{prefix}New cache created: {path}') |
|
except Exception as e: |
|
logging.info(f'{prefix}WARNING: Cache directory {path.parent} is not writeable: {e}') |
|
return x |
|
|
|
def __len__(self): |
|
return len(self.img_files) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def __getitem__(self, index): |
|
index = self.indices[index] |
|
|
|
hyp = self.hyp |
|
mosaic = self.mosaic and random.random() < hyp['mosaic'] |
|
if mosaic: |
|
|
|
img, labels = load_mosaic(self, index) |
|
shapes = None |
|
|
|
|
|
if random.random() < hyp['mixup']: |
|
img2, labels2 = load_mosaic(self, random.randint(0, self.n - 1)) |
|
r = np.random.beta(32.0, 32.0) |
|
img = (img * r + img2 * (1 - r)).astype(np.uint8) |
|
labels = np.concatenate((labels, labels2), 0) |
|
|
|
else: |
|
|
|
img, (h0, w0), (h, w) = load_image(self, index) |
|
|
|
|
|
shape = self.batch_shapes[self.batch[index]] if self.rect else self.img_size |
|
img, ratio, pad = letterbox(img, shape, auto=False, scaleup=self.augment) |
|
shapes = (h0, w0), ((h / h0, w / w0), pad) |
|
|
|
labels = self.labels[index].copy() |
|
if labels.size: |
|
labels[:, 1:] = xywhn2xyxy(labels[:, 1:], ratio[0] * w, ratio[1] * h, padw=pad[0], padh=pad[1]) |
|
|
|
if self.augment: |
|
|
|
if not mosaic: |
|
img, labels = random_perspective(img, labels, |
|
degrees=hyp['degrees'], |
|
translate=hyp['translate'], |
|
scale=hyp['scale'], |
|
shear=hyp['shear'], |
|
perspective=hyp['perspective']) |
|
|
|
|
|
augment_hsv(img, hgain=hyp['hsv_h'], sgain=hyp['hsv_s'], vgain=hyp['hsv_v']) |
|
|
|
|
|
|
|
|
|
|
|
nL = len(labels) |
|
if nL: |
|
labels[:, 1:5] = xyxy2xywh(labels[:, 1:5]) |
|
labels[:, [2, 4]] /= img.shape[0] |
|
labels[:, [1, 3]] /= img.shape[1] |
|
|
|
if self.augment: |
|
|
|
if random.random() < hyp['flipud']: |
|
img = np.flipud(img) |
|
if nL: |
|
labels[:, 2] = 1 - labels[:, 2] |
|
|
|
|
|
if random.random() < hyp['fliplr']: |
|
img = np.fliplr(img) |
|
if nL: |
|
labels[:, 1] = 1 - labels[:, 1] |
|
|
|
labels_out = torch.zeros((nL, 6)) |
|
if nL: |
|
labels_out[:, 1:] = torch.from_numpy(labels) |
|
|
|
|
|
img = img[:, :, ::-1].transpose(2, 0, 1) |
|
img = np.ascontiguousarray(img) |
|
|
|
return torch.from_numpy(img), labels_out, self.img_files[index], shapes |
|
|
|
@staticmethod |
|
def collate_fn(batch): |
|
img, label, path, shapes = zip(*batch) |
|
for i, l in enumerate(label): |
|
l[:, 0] = i |
|
return torch.stack(img, 0), torch.cat(label, 0), path, shapes |
|
|
|
@staticmethod |
|
def collate_fn4(batch): |
|
img, label, path, shapes = zip(*batch) |
|
n = len(shapes) // 4 |
|
img4, label4, path4, shapes4 = [], [], path[:n], shapes[:n] |
|
|
|
ho = torch.tensor([[0., 0, 0, 1, 0, 0]]) |
|
wo = torch.tensor([[0., 0, 1, 0, 0, 0]]) |
|
s = torch.tensor([[1, 1, .5, .5, .5, .5]]) |
|
for i in range(n): |
|
i *= 4 |
|
if random.random() < 0.5: |
|
im = F.interpolate(img[i].unsqueeze(0).float(), scale_factor=2., mode='bilinear', align_corners=False)[ |
|
0].type(img[i].type()) |
|
l = label[i] |
|
else: |
|
im = torch.cat((torch.cat((img[i], img[i + 1]), 1), torch.cat((img[i + 2], img[i + 3]), 1)), 2) |
|
l = torch.cat((label[i], label[i + 1] + ho, label[i + 2] + wo, label[i + 3] + ho + wo), 0) * s |
|
img4.append(im) |
|
label4.append(l) |
|
|
|
for i, l in enumerate(label4): |
|
l[:, 0] = i |
|
|
|
return torch.stack(img4, 0), torch.cat(label4, 0), path4, shapes4 |
|
|
|
|
|
|
|
def load_image(self, index): |
|
|
|
img = self.imgs[index] |
|
if img is None: |
|
path = self.img_files[index] |
|
img = cv2.imread(path) |
|
assert img is not None, 'Image Not Found ' + path |
|
h0, w0 = img.shape[:2] |
|
r = self.img_size / max(h0, w0) |
|
if r != 1: |
|
img = cv2.resize(img, (int(w0 * r), int(h0 * r)), |
|
interpolation=cv2.INTER_AREA if r < 1 and not self.augment else cv2.INTER_LINEAR) |
|
return img, (h0, w0), img.shape[:2] |
|
else: |
|
return self.imgs[index], self.img_hw0[index], self.img_hw[index] |
|
|
|
|
|
def augment_hsv(img, hgain=0.5, sgain=0.5, vgain=0.5): |
|
r = np.random.uniform(-1, 1, 3) * [hgain, sgain, vgain] + 1 |
|
hue, sat, val = cv2.split(cv2.cvtColor(img, cv2.COLOR_BGR2HSV)) |
|
dtype = img.dtype |
|
|
|
x = np.arange(0, 256, dtype=r.dtype) |
|
lut_hue = ((x * r[0]) % 180).astype(dtype) |
|
lut_sat = np.clip(x * r[1], 0, 255).astype(dtype) |
|
lut_val = np.clip(x * r[2], 0, 255).astype(dtype) |
|
|
|
img_hsv = cv2.merge((cv2.LUT(hue, lut_hue), cv2.LUT(sat, lut_sat), cv2.LUT(val, lut_val))) |
|
cv2.cvtColor(img_hsv, cv2.COLOR_HSV2BGR, dst=img) |
|
|
|
|
|
def hist_equalize(img, clahe=True, bgr=False): |
|
|
|
yuv = cv2.cvtColor(img, cv2.COLOR_BGR2YUV if bgr else cv2.COLOR_RGB2YUV) |
|
if clahe: |
|
c = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8)) |
|
yuv[:, :, 0] = c.apply(yuv[:, :, 0]) |
|
else: |
|
yuv[:, :, 0] = cv2.equalizeHist(yuv[:, :, 0]) |
|
return cv2.cvtColor(yuv, cv2.COLOR_YUV2BGR if bgr else cv2.COLOR_YUV2RGB) |
|
|
|
|
|
def load_mosaic(self, index): |
|
|
|
|
|
labels4, segments4 = [], [] |
|
s = self.img_size |
|
yc, xc = [int(random.uniform(-x, 2 * s + x)) for x in self.mosaic_border] |
|
indices = [index] + random.choices(self.indices, k=3) |
|
for i, index in enumerate(indices): |
|
|
|
img, _, (h, w) = load_image(self, index) |
|
|
|
|
|
if i == 0: |
|
img4 = np.full((s * 2, s * 2, img.shape[2]), 114, dtype=np.uint8) |
|
x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc |
|
x1b, y1b, x2b, y2b = w - (x2a - x1a), h - (y2a - y1a), w, h |
|
elif i == 1: |
|
x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, s * 2), yc |
|
x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h |
|
elif i == 2: |
|
x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(s * 2, yc + h) |
|
x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, w, min(y2a - y1a, h) |
|
elif i == 3: |
|
x1a, y1a, x2a, y2a = xc, yc, min(xc + w, s * 2), min(s * 2, yc + h) |
|
x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h) |
|
|
|
img4[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] |
|
padw = x1a - x1b |
|
padh = y1a - y1b |
|
|
|
|
|
labels, segments = self.labels[index].copy(), self.segments[index].copy() |
|
if labels.size: |
|
labels[:, 1:] = xywhn2xyxy(labels[:, 1:], w, h, padw, padh) |
|
segments = [xyn2xy(x, w, h, padw, padh) for x in segments] |
|
labels4.append(labels) |
|
segments4.extend(segments) |
|
|
|
|
|
labels4 = np.concatenate(labels4, 0) |
|
for x in (labels4[:, 1:], *segments4): |
|
np.clip(x, 0, 2 * s, out=x) |
|
|
|
|
|
|
|
img4, labels4 = random_perspective(img4, labels4, segments4, |
|
degrees=self.hyp['degrees'], |
|
translate=self.hyp['translate'], |
|
scale=self.hyp['scale'], |
|
shear=self.hyp['shear'], |
|
perspective=self.hyp['perspective'], |
|
border=self.mosaic_border) |
|
|
|
return img4, labels4 |
|
|
|
|
|
def load_mosaic9(self, index): |
|
|
|
|
|
labels9, segments9 = [], [] |
|
s = self.img_size |
|
indices = [index] + random.choices(self.indices, k=8) |
|
for i, index in enumerate(indices): |
|
|
|
img, _, (h, w) = load_image(self, index) |
|
|
|
|
|
if i == 0: |
|
img9 = np.full((s * 3, s * 3, img.shape[2]), 114, dtype=np.uint8) |
|
h0, w0 = h, w |
|
c = s, s, s + w, s + h |
|
elif i == 1: |
|
c = s, s - h, s + w, s |
|
elif i == 2: |
|
c = s + wp, s - h, s + wp + w, s |
|
elif i == 3: |
|
c = s + w0, s, s + w0 + w, s + h |
|
elif i == 4: |
|
c = s + w0, s + hp, s + w0 + w, s + hp + h |
|
elif i == 5: |
|
c = s + w0 - w, s + h0, s + w0, s + h0 + h |
|
elif i == 6: |
|
c = s + w0 - wp - w, s + h0, s + w0 - wp, s + h0 + h |
|
elif i == 7: |
|
c = s - w, s + h0 - h, s, s + h0 |
|
elif i == 8: |
|
c = s - w, s + h0 - hp - h, s, s + h0 - hp |
|
|
|
padx, pady = c[:2] |
|
x1, y1, x2, y2 = [max(x, 0) for x in c] |
|
|
|
|
|
labels, segments = self.labels[index].copy(), self.segments[index].copy() |
|
if labels.size: |
|
labels[:, 1:] = xywhn2xyxy(labels[:, 1:], w, h, padx, pady) |
|
segments = [xyn2xy(x, w, h, padx, pady) for x in segments] |
|
labels9.append(labels) |
|
segments9.extend(segments) |
|
|
|
|
|
img9[y1:y2, x1:x2] = img[y1 - pady:, x1 - padx:] |
|
hp, wp = h, w |
|
|
|
|
|
yc, xc = [int(random.uniform(0, s)) for _ in self.mosaic_border] |
|
img9 = img9[yc:yc + 2 * s, xc:xc + 2 * s] |
|
|
|
|
|
labels9 = np.concatenate(labels9, 0) |
|
labels9[:, [1, 3]] -= xc |
|
labels9[:, [2, 4]] -= yc |
|
c = np.array([xc, yc]) |
|
segments9 = [x - c for x in segments9] |
|
|
|
for x in (labels9[:, 1:], *segments9): |
|
np.clip(x, 0, 2 * s, out=x) |
|
|
|
|
|
|
|
img9, labels9 = random_perspective(img9, labels9, segments9, |
|
degrees=self.hyp['degrees'], |
|
translate=self.hyp['translate'], |
|
scale=self.hyp['scale'], |
|
shear=self.hyp['shear'], |
|
perspective=self.hyp['perspective'], |
|
border=self.mosaic_border) |
|
|
|
return img9, labels9 |
|
|
|
|
|
def replicate(img, labels): |
|
|
|
h, w = img.shape[:2] |
|
boxes = labels[:, 1:].astype(int) |
|
x1, y1, x2, y2 = boxes.T |
|
s = ((x2 - x1) + (y2 - y1)) / 2 |
|
for i in s.argsort()[:round(s.size * 0.5)]: |
|
x1b, y1b, x2b, y2b = boxes[i] |
|
bh, bw = y2b - y1b, x2b - x1b |
|
yc, xc = int(random.uniform(0, h - bh)), int(random.uniform(0, w - bw)) |
|
x1a, y1a, x2a, y2a = [xc, yc, xc + bw, yc + bh] |
|
img[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] |
|
labels = np.append(labels, [[labels[i, 0], x1a, y1a, x2a, y2a]], axis=0) |
|
|
|
return img, labels |
|
|
|
|
|
def letterbox(img, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True, stride=32): |
|
|
|
shape = img.shape[:2] |
|
if isinstance(new_shape, int): |
|
new_shape = (new_shape, new_shape) |
|
|
|
|
|
r = min(new_shape[0] / shape[0], new_shape[1] / shape[1]) |
|
if not scaleup: |
|
r = min(r, 1.0) |
|
|
|
|
|
ratio = r, r |
|
new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r)) |
|
dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] |
|
if auto: |
|
dw, dh = np.mod(dw, stride), np.mod(dh, stride) |
|
elif scaleFill: |
|
dw, dh = 0.0, 0.0 |
|
new_unpad = (new_shape[1], new_shape[0]) |
|
ratio = new_shape[1] / shape[1], new_shape[0] / shape[0] |
|
|
|
dw /= 2 |
|
dh /= 2 |
|
|
|
if shape[::-1] != new_unpad: |
|
img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR) |
|
top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1)) |
|
left, right = int(round(dw - 0.1)), int(round(dw + 0.1)) |
|
img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) |
|
return img, ratio, (dw, dh) |
|
|
|
|
|
def random_perspective(img, targets=(), segments=(), degrees=10, translate=.1, scale=.1, shear=10, perspective=0.0, |
|
border=(0, 0)): |
|
|
|
|
|
|
|
height = img.shape[0] + border[0] * 2 |
|
width = img.shape[1] + border[1] * 2 |
|
|
|
|
|
C = np.eye(3) |
|
C[0, 2] = -img.shape[1] / 2 |
|
C[1, 2] = -img.shape[0] / 2 |
|
|
|
|
|
P = np.eye(3) |
|
P[2, 0] = random.uniform(-perspective, perspective) |
|
P[2, 1] = random.uniform(-perspective, perspective) |
|
|
|
|
|
R = np.eye(3) |
|
a = random.uniform(-degrees, degrees) |
|
|
|
s = random.uniform(1 - scale, 1 + scale) |
|
|
|
R[:2] = cv2.getRotationMatrix2D(angle=a, center=(0, 0), scale=s) |
|
|
|
|
|
S = np.eye(3) |
|
S[0, 1] = math.tan(random.uniform(-shear, shear) * math.pi / 180) |
|
S[1, 0] = math.tan(random.uniform(-shear, shear) * math.pi / 180) |
|
|
|
|
|
T = np.eye(3) |
|
T[0, 2] = random.uniform(0.5 - translate, 0.5 + translate) * width |
|
T[1, 2] = random.uniform(0.5 - translate, 0.5 + translate) * height |
|
|
|
|
|
M = T @ S @ R @ P @ C |
|
if (border[0] != 0) or (border[1] != 0) or (M != np.eye(3)).any(): |
|
if perspective: |
|
img = cv2.warpPerspective(img, M, dsize=(width, height), borderValue=(114, 114, 114)) |
|
else: |
|
img = cv2.warpAffine(img, M[:2], dsize=(width, height), borderValue=(114, 114, 114)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
n = len(targets) |
|
if n: |
|
use_segments = any(x.any() for x in segments) |
|
new = np.zeros((n, 4)) |
|
if use_segments: |
|
segments = resample_segments(segments) |
|
for i, segment in enumerate(segments): |
|
xy = np.ones((len(segment), 3)) |
|
xy[:, :2] = segment |
|
xy = xy @ M.T |
|
xy = xy[:, :2] / xy[:, 2:3] if perspective else xy[:, :2] |
|
|
|
|
|
new[i] = segment2box(xy, width, height) |
|
|
|
else: |
|
xy = np.ones((n * 4, 3)) |
|
xy[:, :2] = targets[:, [1, 2, 3, 4, 1, 4, 3, 2]].reshape(n * 4, 2) |
|
xy = xy @ M.T |
|
xy = (xy[:, :2] / xy[:, 2:3] if perspective else xy[:, :2]).reshape(n, 8) |
|
|
|
|
|
x = xy[:, [0, 2, 4, 6]] |
|
y = xy[:, [1, 3, 5, 7]] |
|
new = np.concatenate((x.min(1), y.min(1), x.max(1), y.max(1))).reshape(4, n).T |
|
|
|
|
|
new[:, [0, 2]] = new[:, [0, 2]].clip(0, width) |
|
new[:, [1, 3]] = new[:, [1, 3]].clip(0, height) |
|
|
|
|
|
i = box_candidates(box1=targets[:, 1:5].T * s, box2=new.T, area_thr=0.01 if use_segments else 0.10) |
|
targets = targets[i] |
|
targets[:, 1:5] = new[i] |
|
|
|
return img, targets |
|
|
|
|
|
def box_candidates(box1, box2, wh_thr=2, ar_thr=20, area_thr=0.1, eps=1e-16): |
|
|
|
w1, h1 = box1[2] - box1[0], box1[3] - box1[1] |
|
w2, h2 = box2[2] - box2[0], box2[3] - box2[1] |
|
ar = np.maximum(w2 / (h2 + eps), h2 / (w2 + eps)) |
|
return (w2 > wh_thr) & (h2 > wh_thr) & (w2 * h2 / (w1 * h1 + eps) > area_thr) & (ar < ar_thr) |
|
|
|
|
|
def cutout(image, labels): |
|
|
|
h, w = image.shape[:2] |
|
|
|
def bbox_ioa(box1, box2): |
|
|
|
box2 = box2.transpose() |
|
|
|
|
|
b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3] |
|
b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3] |
|
|
|
|
|
inter_area = (np.minimum(b1_x2, b2_x2) - np.maximum(b1_x1, b2_x1)).clip(0) * \ |
|
(np.minimum(b1_y2, b2_y2) - np.maximum(b1_y1, b2_y1)).clip(0) |
|
|
|
|
|
box2_area = (b2_x2 - b2_x1) * (b2_y2 - b2_y1) + 1e-16 |
|
|
|
|
|
return inter_area / box2_area |
|
|
|
|
|
scales = [0.5] * 1 + [0.25] * 2 + [0.125] * 4 + [0.0625] * 8 + [0.03125] * 16 |
|
for s in scales: |
|
mask_h = random.randint(1, int(h * s)) |
|
mask_w = random.randint(1, int(w * s)) |
|
|
|
|
|
xmin = max(0, random.randint(0, w) - mask_w // 2) |
|
ymin = max(0, random.randint(0, h) - mask_h // 2) |
|
xmax = min(w, xmin + mask_w) |
|
ymax = min(h, ymin + mask_h) |
|
|
|
|
|
image[ymin:ymax, xmin:xmax] = [random.randint(64, 191) for _ in range(3)] |
|
|
|
|
|
if len(labels) and s > 0.03: |
|
box = np.array([xmin, ymin, xmax, ymax], dtype=np.float32) |
|
ioa = bbox_ioa(box, labels[:, 1:5]) |
|
labels = labels[ioa < 0.60] |
|
|
|
return labels |
|
|
|
|
|
def create_folder(path='./new'): |
|
|
|
if os.path.exists(path): |
|
shutil.rmtree(path) |
|
os.makedirs(path) |
|
|
|
|
|
def flatten_recursive(path='../coco128'): |
|
|
|
new_path = Path(path + '_flat') |
|
create_folder(new_path) |
|
for file in tqdm(glob.glob(str(Path(path)) + '/**/*.*', recursive=True)): |
|
shutil.copyfile(file, new_path / Path(file).name) |
|
|
|
|
|
def extract_boxes(path='../coco128/'): |
|
|
|
|
|
path = Path(path) |
|
shutil.rmtree(path / 'classifier') if (path / 'classifier').is_dir() else None |
|
files = list(path.rglob('*.*')) |
|
n = len(files) |
|
for im_file in tqdm(files, total=n): |
|
if im_file.suffix[1:] in img_formats: |
|
|
|
im = cv2.imread(str(im_file))[..., ::-1] |
|
h, w = im.shape[:2] |
|
|
|
|
|
lb_file = Path(img2label_paths([str(im_file)])[0]) |
|
if Path(lb_file).exists(): |
|
with open(lb_file, 'r') as f: |
|
lb = np.array([x.split() for x in f.read().strip().splitlines()], dtype=np.float32) |
|
|
|
for j, x in enumerate(lb): |
|
c = int(x[0]) |
|
f = (path / 'classifier') / f'{c}' / f'{path.stem}_{im_file.stem}_{j}.jpg' |
|
if not f.parent.is_dir(): |
|
f.parent.mkdir(parents=True) |
|
|
|
b = x[1:] * [w, h, w, h] |
|
|
|
b[2:] = b[2:] * 1.2 + 3 |
|
b = xywh2xyxy(b.reshape(-1, 4)).ravel().astype(np.int) |
|
|
|
b[[0, 2]] = np.clip(b[[0, 2]], 0, w) |
|
b[[1, 3]] = np.clip(b[[1, 3]], 0, h) |
|
assert cv2.imwrite(str(f), im[b[1]:b[3], b[0]:b[2]]), f'box failure in {f}' |
|
|
|
|
|
def autosplit(path='../coco128', weights=(0.9, 0.1, 0.0), annotated_only=False): |
|
""" Autosplit a dataset into train/val/test splits and save path/autosplit_*.txt files |
|
Usage: from utils.datasets import *; autosplit('../coco128') |
|
Arguments |
|
path: Path to images directory |
|
weights: Train, val, test weights (list) |
|
annotated_only: Only use images with an annotated txt file |
|
""" |
|
path = Path(path) |
|
files = sum([list(path.rglob(f"*.{img_ext}")) for img_ext in img_formats], []) |
|
n = len(files) |
|
indices = random.choices([0, 1, 2], weights=weights, k=n) |
|
|
|
txt = ['autosplit_train.txt', 'autosplit_val.txt', 'autosplit_test.txt'] |
|
[(path / x).unlink() for x in txt if (path / x).exists()] |
|
|
|
print(f'Autosplitting images from {path}' + ', using *.txt labeled images only' * annotated_only) |
|
for i, img in tqdm(zip(indices, files), total=n): |
|
if not annotated_only or Path(img2label_paths([str(img)])[0]).exists(): |
|
with open(path / txt[i], 'a') as f: |
|
f.write(str(img) + '\n') |
|
|
|
|
|
def verify_image_label(params): |
|
|
|
im_file, lb_file, prefix = params |
|
nm, nf, ne, nc = 0, 0, 0, 0 |
|
try: |
|
|
|
im = Image.open(im_file) |
|
im.verify() |
|
shape = exif_size(im) |
|
segments = [] |
|
assert (shape[0] > 9) & (shape[1] > 9), f'image size {shape} <10 pixels' |
|
assert im.format.lower() in img_formats, f'invalid image format {im.format}' |
|
|
|
|
|
if os.path.isfile(lb_file): |
|
nf = 1 |
|
with open(lb_file, 'r') as f: |
|
l = [x.split() for x in f.read().strip().splitlines() if len(x)] |
|
if any([len(x) > 8 for x in l]): |
|
classes = np.array([x[0] for x in l], dtype=np.float32) |
|
segments = [np.array(x[1:], dtype=np.float32).reshape(-1, 2) for x in l] |
|
l = np.concatenate((classes.reshape(-1, 1), segments2boxes(segments)), 1) |
|
l = np.array(l, dtype=np.float32) |
|
if len(l): |
|
assert l.shape[1] == 5, 'labels require 5 columns each' |
|
assert (l >= 0).all(), 'negative labels' |
|
assert (l[:, 1:] <= 1).all(), 'non-normalized or out of bounds coordinate labels' |
|
assert np.unique(l, axis=0).shape[0] == l.shape[0], 'duplicate labels' |
|
else: |
|
ne = 1 |
|
l = np.zeros((0, 5), dtype=np.float32) |
|
else: |
|
nm = 1 |
|
l = np.zeros((0, 5), dtype=np.float32) |
|
return im_file, l, shape, segments, nm, nf, ne, nc |
|
except Exception as e: |
|
nc = 1 |
|
logging.info(f'{prefix}WARNING: Ignoring corrupted image and/or label {im_file}: {e}') |
|
return [None] * 4 + [nm, nf, ne, nc] |
|
|
|
|
|
def dataset_stats(path='coco128.yaml', autodownload=False, verbose=False): |
|
""" Return dataset statistics dictionary with images and instances counts per split per class |
|
Usage: from utils.datasets import *; dataset_stats('coco128.yaml', verbose=True) |
|
Arguments |
|
path: Path to data.yaml |
|
autodownload: Attempt to download dataset if not found locally |
|
verbose: Print stats dictionary |
|
""" |
|
with open(check_file(Path(path))) as f: |
|
data = yaml.safe_load(f) |
|
check_dataset(data, autodownload) |
|
nc = data['nc'] |
|
stats = {'nc': nc, 'names': data['names']} |
|
for split in 'train', 'val', 'test': |
|
if split not in data: |
|
stats[split] = None |
|
continue |
|
x = [] |
|
dataset = LoadImagesAndLabels(data[split], augment=False, rect=True) |
|
if split == 'train': |
|
cache_path = Path(dataset.label_files[0]).parent.with_suffix('.cache') |
|
for label in tqdm(dataset.labels, total=dataset.n, desc='Statistics'): |
|
x.append(np.bincount(label[:, 0].astype(int), minlength=nc)) |
|
x = np.array(x) |
|
stats[split] = {'instance_stats': {'total': int(x.sum()), 'per_class': x.sum(0).tolist()}, |
|
'image_stats': {'total': dataset.n, 'unlabelled': int(np.all(x == 0, 1).sum()), |
|
'per_class': (x > 0).sum(0).tolist()}, |
|
'labels': {str(Path(k).name): v.tolist() for k, v in zip(dataset.img_files, dataset.labels)}} |
|
|
|
|
|
with open(cache_path.with_suffix('.json'), 'w') as f: |
|
json.dump(stats, f) |
|
if verbose: |
|
print(yaml.dump([stats], sort_keys=False, default_flow_style=False)) |
|
|
|
return stats |
|
|