yolov5 / hubconf.py
glenn-jocher's picture
PyTorch Hub load directly when possible (#2986)
d08575e unverified
raw
history blame
6.24 kB
"""YOLOv5 PyTorch Hub models https://pytorch.org/hub/ultralytics_yolov5/
Usage:
import torch
model = torch.hub.load('ultralytics/yolov5', 'yolov5s')
"""
from pathlib import Path
import torch
from models.yolo import Model, attempt_load
from utils.general import check_requirements, set_logging
from utils.google_utils import attempt_download
from utils.torch_utils import select_device
dependencies = ['torch', 'yaml']
check_requirements(Path(__file__).parent / 'requirements.txt', exclude=('tensorboard', 'pycocotools', 'thop'))
def create(name, pretrained, channels, classes, autoshape, verbose):
"""Creates a specified YOLOv5 model
Arguments:
name (str): name of model, i.e. 'yolov5s'
pretrained (bool): load pretrained weights into the model
channels (int): number of input channels
classes (int): number of model classes
autoshape (bool): apply YOLOv5 .autoshape() wrapper to model
verbose (bool): print all information to screen
Returns:
YOLOv5 pytorch model
"""
set_logging(verbose=verbose)
fname = f'{name}.pt' # checkpoint filename
try:
if pretrained and channels == 3 and classes == 80:
model = attempt_load(fname, map_location=torch.device('cpu')) # download/load FP32 model
else:
cfg = list((Path(__file__).parent / 'models').rglob(f'{name}.yaml'))[0] # model.yaml path
model = Model(cfg, channels, classes) # create model
if pretrained:
attempt_download(fname) # download if not found locally
ckpt = torch.load(fname, map_location=torch.device('cpu')) # load
msd = model.state_dict() # model state_dict
csd = ckpt['model'].float().state_dict() # checkpoint state_dict as FP32
csd = {k: v for k, v in csd.items() if msd[k].shape == v.shape} # filter
model.load_state_dict(csd, strict=False) # load
if len(ckpt['model'].names) == classes:
model.names = ckpt['model'].names # set class names attribute
if autoshape:
model = model.autoshape() # for file/URI/PIL/cv2/np inputs and NMS
device = select_device('0' if torch.cuda.is_available() else 'cpu') # default to GPU if available
return model.to(device)
except Exception as e:
help_url = 'https://github.com/ultralytics/yolov5/issues/36'
s = 'Cache may be out of date, try `force_reload=True`. See %s for help.' % help_url
raise Exception(s) from e
def custom(path_or_model='path/to/model.pt', autoshape=True, verbose=True):
"""YOLOv5-custom model https://github.com/ultralytics/yolov5
Arguments (3 options):
path_or_model (str): 'path/to/model.pt'
path_or_model (dict): torch.load('path/to/model.pt')
path_or_model (nn.Module): torch.load('path/to/model.pt')['model']
Returns:
pytorch model
"""
set_logging(verbose=verbose)
model = torch.load(path_or_model) if isinstance(path_or_model, str) else path_or_model # load checkpoint
if isinstance(model, dict):
model = model['ema' if model.get('ema') else 'model'] # load model
hub_model = Model(model.yaml).to(next(model.parameters()).device) # create
hub_model.load_state_dict(model.float().state_dict()) # load state_dict
hub_model.names = model.names # class names
if autoshape:
hub_model = hub_model.autoshape() # for file/URI/PIL/cv2/np inputs and NMS
device = select_device('0' if torch.cuda.is_available() else 'cpu') # default to GPU if available
return hub_model.to(device)
def yolov5s(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True):
# YOLOv5-small model https://github.com/ultralytics/yolov5
return create('yolov5s', pretrained, channels, classes, autoshape, verbose)
def yolov5m(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True):
# YOLOv5-medium model https://github.com/ultralytics/yolov5
return create('yolov5m', pretrained, channels, classes, autoshape, verbose)
def yolov5l(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True):
# YOLOv5-large model https://github.com/ultralytics/yolov5
return create('yolov5l', pretrained, channels, classes, autoshape, verbose)
def yolov5x(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True):
# YOLOv5-xlarge model https://github.com/ultralytics/yolov5
return create('yolov5x', pretrained, channels, classes, autoshape, verbose)
def yolov5s6(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True):
# YOLOv5-small-P6 model https://github.com/ultralytics/yolov5
return create('yolov5s6', pretrained, channels, classes, autoshape, verbose)
def yolov5m6(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True):
# YOLOv5-medium-P6 model https://github.com/ultralytics/yolov5
return create('yolov5m6', pretrained, channels, classes, autoshape, verbose)
def yolov5l6(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True):
# YOLOv5-large-P6 model https://github.com/ultralytics/yolov5
return create('yolov5l6', pretrained, channels, classes, autoshape, verbose)
def yolov5x6(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True):
# YOLOv5-xlarge-P6 model https://github.com/ultralytics/yolov5
return create('yolov5x6', pretrained, channels, classes, autoshape, verbose)
if __name__ == '__main__':
model = create(name='yolov5s', pretrained=True, channels=3, classes=80, autoshape=True, verbose=True) # pretrained
# model = custom(path_or_model='path/to/model.pt') # custom
# Verify inference
import cv2
import numpy as np
from PIL import Image
imgs = ['data/images/zidane.jpg', # filename
'https://github.com/ultralytics/yolov5/releases/download/v1.0/zidane.jpg', # URI
cv2.imread('data/images/bus.jpg')[:, :, ::-1], # OpenCV
Image.open('data/images/bus.jpg'), # PIL
np.zeros((320, 640, 3))] # numpy
results = model(imgs) # batched inference
results.print()
results.save()