yolov5 / utils /benchmarks.py
glenn-jocher's picture
YOLOv5 Export Benchmarks (#6613)
a45e472 unverified
raw
history blame
3.81 kB
# YOLOv5 πŸš€ by Ultralytics, GPL-3.0 license
"""
Run YOLOv5 benchmarks on all supported export formats
Format | `export.py --include` | Model
--- | --- | ---
PyTorch | - | yolov5s.pt
TorchScript | `torchscript` | yolov5s.torchscript
ONNX | `onnx` | yolov5s.onnx
OpenVINO | `openvino` | yolov5s_openvino_model/
TensorRT | `engine` | yolov5s.engine
CoreML | `coreml` | yolov5s.mlmodel
TensorFlow SavedModel | `saved_model` | yolov5s_saved_model/
TensorFlow GraphDef | `pb` | yolov5s.pb
TensorFlow Lite | `tflite` | yolov5s.tflite
TensorFlow Edge TPU | `edgetpu` | yolov5s_edgetpu.tflite
TensorFlow.js | `tfjs` | yolov5s_web_model/
Requirements:
$ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime openvino-dev tensorflow-cpu # CPU
$ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime-gpu openvino-dev tensorflow # GPU
Usage:
$ python utils/benchmarks.py --weights yolov5s.pt --img 640
"""
import argparse
import sys
import time
from pathlib import Path
import pandas as pd
FILE = Path(__file__).resolve()
ROOT = FILE.parents[1] # YOLOv5 root directory
if str(ROOT) not in sys.path:
sys.path.append(str(ROOT)) # add ROOT to PATH
# ROOT = ROOT.relative_to(Path.cwd()) # relative
import export
import val
from utils import notebook_init
from utils.general import LOGGER, print_args
def run(weights=ROOT / 'yolov5s.pt', # weights path
imgsz=640, # inference size (pixels)
batch_size=1, # batch size
data=ROOT / 'data/coco128.yaml', # dataset.yaml path
):
y, t = [], time.time()
formats = export.export_formats()
for i, (name, f, suffix) in formats.iterrows(): # index, (name, file, suffix)
try:
w = weights if f == '-' else export.run(weights=weights, imgsz=[imgsz], include=[f], device='cpu')[-1]
assert suffix in str(w), 'export failed'
result = val.run(data, w, batch_size, imgsz=imgsz, plots=False, device='cpu', task='benchmark')
metrics = result[0] # metrics (mp, mr, map50, map, *losses(box, obj, cls))
speeds = result[2] # times (preprocess, inference, postprocess)
y.append([name, metrics[3], speeds[1]]) # mAP, t_inference
except Exception as e:
LOGGER.warning(f'WARNING: Benchmark failure for {name}: {e}')
y.append([name, None, None]) # mAP, t_inference
# Print results
LOGGER.info('\n')
parse_opt()
notebook_init() # print system info
py = pd.DataFrame(y, columns=['Format', '[email protected]:0.95', 'Inference time (ms)'])
LOGGER.info(f'\nBenchmarks complete ({time.time() - t:.2f}s)')
LOGGER.info(str(py))
return py
def parse_opt():
parser = argparse.ArgumentParser()
parser.add_argument('--weights', type=str, default=ROOT / 'yolov5s.pt', help='weights path')
parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='inference size (pixels)')
parser.add_argument('--batch-size', type=int, default=1, help='batch size')
parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path')
opt = parser.parse_args()
print_args(FILE.stem, opt)
return opt
def main(opt):
run(**vars(opt))
if __name__ == "__main__":
opt = parse_opt()
main(opt)