|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
path: ../datasets/GlobalWheat2020 |
|
train: |
|
- images/arvalis_1 |
|
- images/arvalis_2 |
|
- images/arvalis_3 |
|
- images/ethz_1 |
|
- images/rres_1 |
|
- images/inrae_1 |
|
- images/usask_1 |
|
val: |
|
- images/ethz_1 |
|
test: |
|
- images/utokyo_1 |
|
- images/utokyo_2 |
|
- images/nau_1 |
|
- images/uq_1 |
|
|
|
|
|
nc: 1 |
|
names: ['wheat_head'] |
|
|
|
|
|
|
|
download: | |
|
from utils.general import download, Path |
|
|
|
|
|
dir = Path(yaml['path']) |
|
urls = ['https://zenodo.org/record/4298502/files/global-wheat-codalab-official.zip', |
|
'https://github.com/ultralytics/yolov5/releases/download/v1.0/GlobalWheat2020_labels.zip'] |
|
download(urls, dir=dir) |
|
|
|
|
|
for p in 'annotations', 'images', 'labels': |
|
(dir / p).mkdir(parents=True, exist_ok=True) |
|
|
|
|
|
for p in 'arvalis_1', 'arvalis_2', 'arvalis_3', 'ethz_1', 'rres_1', 'inrae_1', 'usask_1', \ |
|
'utokyo_1', 'utokyo_2', 'nau_1', 'uq_1': |
|
(dir / p).rename(dir / 'images' / p) |
|
f = (dir / p).with_suffix('.json') |
|
if f.exists(): |
|
f.rename((dir / 'annotations' / p).with_suffix('.json')) |
|
|