# Resume all interrupted trainings in yolov5/ dir including DDP trainings | |
# Usage: $ python utils/aws/resume.py | |
import os | |
import sys | |
from pathlib import Path | |
import torch | |
import yaml | |
FILE = Path(__file__).resolve() | |
ROOT = FILE.parents[2] # YOLOv5 root directory | |
if str(ROOT) not in sys.path: | |
sys.path.append(str(ROOT)) # add ROOT to PATH | |
port = 0 # --master_port | |
path = Path('').resolve() | |
for last in path.rglob('*/**/last.pt'): | |
ckpt = torch.load(last) | |
if ckpt['optimizer'] is None: | |
continue | |
# Load opt.yaml | |
with open(last.parent.parent / 'opt.yaml', errors='ignore') as f: | |
opt = yaml.safe_load(f) | |
# Get device count | |
d = opt['device'].split(',') # devices | |
nd = len(d) # number of devices | |
ddp = nd > 1 or (nd == 0 and torch.cuda.device_count() > 1) # distributed data parallel | |
if ddp: # multi-GPU | |
port += 1 | |
cmd = f'python -m torch.distributed.run --nproc_per_node {nd} --master_port {port} train.py --resume {last}' | |
else: # single-GPU | |
cmd = f'python train.py --resume {last}' | |
cmd += ' > /dev/null 2>&1 &' # redirect output to dev/null and run in daemon thread | |
print(cmd) | |
os.system(cmd) | |