yolov5 / models /export.py
glenn-jocher's picture
export.py update
a62a1c2
raw
history blame
2.15 kB
"""Exports a YOLOv5 *.pt model to ONNX and TorchScript formats
Usage:
$ export PYTHONPATH="$PWD" && python models/export.py --weights ./weights/yolov5s.pt --img 640 --batch 1
"""
import argparse
from models.common import *
from utils import google_utils
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--weights', type=str, default='./yolov5s.pt', help='weights path')
parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='image size')
parser.add_argument('--batch-size', type=int, default=1, help='batch size')
opt = parser.parse_args()
opt.img_size *= 2 if len(opt.img_size) == 1 else 1 # expand
print(opt)
# Input
img = torch.zeros((opt.batch_size, 3, *opt.img_size)) # image size(1,3,320,192) iDetection
# Load PyTorch model
google_utils.attempt_download(opt.weights)
model = torch.load(opt.weights, map_location=torch.device('cpu'))['model'].float()
model.eval()
model.model[-1].export = True # set Detect() layer export=True
_ = model(img) # dry run
# TorchScript export
try:
f = opt.weights.replace('.pt', '.torchscript') # filename
ts = torch.jit.trace(model, img)
ts.save(f)
print('TorchScript export success, saved as %s' % f)
except Exception as e:
print('TorchScript export failed: %s' % e)
# ONNX export
try:
import onnx
f = opt.weights.replace('.pt', '.onnx') # filename
model.fuse() # only for ONNX
torch.onnx.export(model, img, f, verbose=False, opset_version=12, input_names=['images'],
output_names=['output']) # output_names=['classes', 'boxes']
# Checks
onnx_model = onnx.load(f) # load onnx model
onnx.checker.check_model(onnx_model) # check onnx model
print(onnx.helper.printable_graph(onnx_model.graph)) # print a human readable representation of the graph
print('ONNX export success, saved as %s\nView with https://github.com/lutzroeder/netron' % f)
except Exception as e:
print('ONNX export failed: %s' % e)