|
|
|
""" |
|
Run a Flask REST API exposing a YOLOv5s model |
|
""" |
|
|
|
import argparse |
|
import io |
|
|
|
import torch |
|
from flask import Flask, request |
|
from PIL import Image |
|
|
|
app = Flask(__name__) |
|
|
|
DETECTION_URL = "/v1/object-detection/yolov5s" |
|
|
|
|
|
@app.route(DETECTION_URL, methods=["POST"]) |
|
def predict(): |
|
if request.method != "POST": |
|
return |
|
|
|
if request.files.get("image"): |
|
|
|
|
|
|
|
|
|
|
|
im_file = request.files["image"] |
|
im_bytes = im_file.read() |
|
im = Image.open(io.BytesIO(im_bytes)) |
|
|
|
results = model(im, size=640) |
|
return results.pandas().xyxy[0].to_json(orient="records") |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser(description="Flask API exposing YOLOv5 model") |
|
parser.add_argument("--port", default=5000, type=int, help="port number") |
|
opt = parser.parse_args() |
|
|
|
|
|
torch.hub._validate_not_a_forked_repo = lambda a, b, c: True |
|
|
|
model = torch.hub.load("ultralytics/yolov5", "yolov5s", force_reload=True) |
|
app.run(host="0.0.0.0", port=opt.port) |
|
|