|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
path: ../datasets/VisDrone |
|
train: VisDrone2019-DET-train/images |
|
val: VisDrone2019-DET-val/images |
|
test: VisDrone2019-DET-test-dev/images |
|
|
|
|
|
nc: 10 |
|
names: ['pedestrian', 'people', 'bicycle', 'car', 'van', 'truck', 'tricycle', 'awning-tricycle', 'bus', 'motor'] |
|
|
|
|
|
|
|
download: | |
|
from utils.general import download, os, Path |
|
|
|
def visdrone2yolo(dir): |
|
from PIL import Image |
|
from tqdm.auto import tqdm |
|
|
|
def convert_box(size, box): |
|
|
|
dw = 1. / size[0] |
|
dh = 1. / size[1] |
|
return (box[0] + box[2] / 2) * dw, (box[1] + box[3] / 2) * dh, box[2] * dw, box[3] * dh |
|
|
|
(dir / 'labels').mkdir(parents=True, exist_ok=True) |
|
pbar = tqdm((dir / 'annotations').glob('*.txt'), desc=f'Converting {dir}') |
|
for f in pbar: |
|
img_size = Image.open((dir / 'images' / f.name).with_suffix('.jpg')).size |
|
lines = [] |
|
with open(f, 'r') as file: |
|
for row in [x.split(',') for x in file.read().strip().splitlines()]: |
|
if row[4] == '0': # VisDrone 'ignored regions' class 0 |
|
continue |
|
cls = int(row[5]) - 1 |
|
box = convert_box(img_size, tuple(map(int, row[:4]))) |
|
lines.append(f"{cls} {' '.join(f'{x:.6f}' for x in box)}\n") |
|
with open(str(f).replace(os.sep + 'annotations' + os.sep, os.sep + 'labels' + os.sep), 'w') as fl: |
|
fl.writelines(lines) |
|
|
|
|
|
|
|
dir = Path(yaml['path']) |
|
urls = ['https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-train.zip', |
|
'https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-val.zip', |
|
'https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-test-dev.zip', |
|
'https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-test-challenge.zip'] |
|
download(urls, dir=dir, curl=True, threads=4) |
|
|
|
|
|
for d in 'VisDrone2019-DET-train', 'VisDrone2019-DET-val', 'VisDrone2019-DET-test-dev': |
|
visdrone2yolo(dir / d) |
|
|