glenn-jocher
commited on
Commit
•
0e5cfdb
1
Parent(s):
66cf5c2
Refactor models/export.py arguments (#3564)
Browse files* Refactor models/export.py arguments
* cleanup
* cleanup
- models/export.py +63 -45
models/export.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
"""
|
2 |
|
3 |
Usage:
|
4 |
$ python path/to/models/export.py --weights yolov5s.pt --img 640 --batch 1
|
@@ -21,42 +21,39 @@ from utils.activations import Hardswish, SiLU
|
|
21 |
from utils.general import colorstr, check_img_size, check_requirements, file_size, set_logging
|
22 |
from utils.torch_utils import select_device
|
23 |
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
opt = parser.parse_args()
|
39 |
-
opt.img_size *= 2 if len(opt.img_size) == 1 else 1 # expand
|
40 |
-
opt.include = [x.lower() for x in opt.include]
|
41 |
-
print(opt)
|
42 |
-
set_logging()
|
43 |
t = time.time()
|
|
|
|
|
44 |
|
45 |
# Load PyTorch model
|
46 |
-
device = select_device(
|
47 |
-
assert not (
|
48 |
-
model = attempt_load(
|
49 |
labels = model.names
|
50 |
|
51 |
# Input
|
52 |
gs = int(max(model.stride)) # grid size (max stride)
|
53 |
-
|
54 |
-
img = torch.zeros(
|
55 |
|
56 |
# Update model
|
57 |
-
if
|
58 |
img, model = img.half(), model.half() # to FP16
|
59 |
-
model.train() if
|
60 |
for k, m in model.named_modules():
|
61 |
m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility
|
62 |
if isinstance(m, models.common.Conv): # assign export-friendly activations
|
@@ -65,42 +62,42 @@ if __name__ == '__main__':
|
|
65 |
elif isinstance(m.act, nn.SiLU):
|
66 |
m.act = SiLU()
|
67 |
elif isinstance(m, models.yolo.Detect):
|
68 |
-
m.inplace =
|
69 |
-
m.onnx_dynamic =
|
70 |
# m.forward = m.forward_export # assign forward (optional)
|
71 |
|
72 |
for _ in range(2):
|
73 |
y = model(img) # dry runs
|
74 |
-
print(f"\n{colorstr('PyTorch:')} starting from {
|
75 |
|
76 |
# TorchScript export -----------------------------------------------------------------------------------------------
|
77 |
-
if 'torchscript' in
|
78 |
prefix = colorstr('TorchScript:')
|
79 |
try:
|
80 |
print(f'\n{prefix} starting export with torch {torch.__version__}...')
|
81 |
-
f =
|
82 |
ts = torch.jit.trace(model, img, strict=False)
|
83 |
-
(optimize_for_mobile(ts) if
|
84 |
print(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
|
85 |
except Exception as e:
|
86 |
print(f'{prefix} export failure: {e}')
|
87 |
|
88 |
# ONNX export ------------------------------------------------------------------------------------------------------
|
89 |
-
if 'onnx' in
|
90 |
prefix = colorstr('ONNX:')
|
91 |
try:
|
92 |
import onnx
|
93 |
|
94 |
print(f'{prefix} starting export with onnx {onnx.__version__}...')
|
95 |
-
f =
|
96 |
-
torch.onnx.export(model, img, f, verbose=False, opset_version=
|
97 |
-
training=torch.onnx.TrainingMode.TRAINING if
|
98 |
-
do_constant_folding=not
|
99 |
input_names=['images'],
|
100 |
output_names=['output'],
|
101 |
dynamic_axes={'images': {0: 'batch', 2: 'height', 3: 'width'}, # shape(1,3,640,640)
|
102 |
'output': {0: 'batch', 1: 'anchors'} # shape(1,25200,85)
|
103 |
-
} if
|
104 |
|
105 |
# Checks
|
106 |
model_onnx = onnx.load(f) # load onnx model
|
@@ -108,7 +105,7 @@ if __name__ == '__main__':
|
|
108 |
# print(onnx.helper.printable_graph(model_onnx.graph)) # print
|
109 |
|
110 |
# Simplify
|
111 |
-
if
|
112 |
try:
|
113 |
check_requirements(['onnx-simplifier'])
|
114 |
import onnxsim
|
@@ -116,8 +113,8 @@ if __name__ == '__main__':
|
|
116 |
print(f'{prefix} simplifying with onnx-simplifier {onnxsim.__version__}...')
|
117 |
model_onnx, check = onnxsim.simplify(
|
118 |
model_onnx,
|
119 |
-
dynamic_input_shape=
|
120 |
-
input_shapes={'images': list(img.shape)} if
|
121 |
assert check, 'assert check failed'
|
122 |
onnx.save(model_onnx, f)
|
123 |
except Exception as e:
|
@@ -127,15 +124,15 @@ if __name__ == '__main__':
|
|
127 |
print(f'{prefix} export failure: {e}')
|
128 |
|
129 |
# CoreML export ----------------------------------------------------------------------------------------------------
|
130 |
-
if 'coreml' in
|
131 |
prefix = colorstr('CoreML:')
|
132 |
try:
|
133 |
import coremltools as ct
|
134 |
|
135 |
print(f'{prefix} starting export with coremltools {ct.__version__}...')
|
136 |
-
assert
|
137 |
model = ct.convert(ts, inputs=[ct.ImageType('image', shape=img.shape, scale=1 / 255.0, bias=[0, 0, 0])])
|
138 |
-
f =
|
139 |
model.save(f)
|
140 |
print(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
|
141 |
except Exception as e:
|
@@ -143,3 +140,24 @@ if __name__ == '__main__':
|
|
143 |
|
144 |
# Finish
|
145 |
print(f'\nExport complete ({time.time() - t:.2f}s). Visualize with https://github.com/lutzroeder/netron.')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Export a YOLOv5 *.pt model to TorchScript, ONNX, CoreML formats
|
2 |
|
3 |
Usage:
|
4 |
$ python path/to/models/export.py --weights yolov5s.pt --img 640 --batch 1
|
|
|
21 |
from utils.general import colorstr, check_img_size, check_requirements, file_size, set_logging
|
22 |
from utils.torch_utils import select_device
|
23 |
|
24 |
+
|
25 |
+
def export(weights='./yolov5s.pt', # weights path
|
26 |
+
img_size=(640, 640), # image (height, width)
|
27 |
+
batch_size=1, # batch size
|
28 |
+
device='cpu', # cuda device, i.e. 0 or 0,1,2,3 or cpu
|
29 |
+
include=('torchscript', 'onnx', 'coreml'), # include formats
|
30 |
+
half=False, # FP16 half-precision export
|
31 |
+
inplace=False, # set YOLOv5 Detect() inplace=True
|
32 |
+
train=False, # model.train() mode
|
33 |
+
optimize=False, # TorchScript: optimize for mobile
|
34 |
+
dynamic=False, # ONNX: dynamic axes
|
35 |
+
simplify=False, # ONNX: simplify model
|
36 |
+
opset_version=12, # ONNX: opset version
|
37 |
+
):
|
|
|
|
|
|
|
|
|
|
|
38 |
t = time.time()
|
39 |
+
include = [x.lower() for x in include]
|
40 |
+
img_size *= 2 if len(img_size) == 1 else 1 # expand
|
41 |
|
42 |
# Load PyTorch model
|
43 |
+
device = select_device(device)
|
44 |
+
assert not (device.type == 'cpu' and opt.half), '--half only compatible with GPU export, i.e. use --device 0'
|
45 |
+
model = attempt_load(weights, map_location=device) # load FP32 model
|
46 |
labels = model.names
|
47 |
|
48 |
# Input
|
49 |
gs = int(max(model.stride)) # grid size (max stride)
|
50 |
+
img_size = [check_img_size(x, gs) for x in img_size] # verify img_size are gs-multiples
|
51 |
+
img = torch.zeros(batch_size, 3, *img_size).to(device) # image size(1,3,320,192) iDetection
|
52 |
|
53 |
# Update model
|
54 |
+
if half:
|
55 |
img, model = img.half(), model.half() # to FP16
|
56 |
+
model.train() if train else model.eval() # training mode = no Detect() layer grid construction
|
57 |
for k, m in model.named_modules():
|
58 |
m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility
|
59 |
if isinstance(m, models.common.Conv): # assign export-friendly activations
|
|
|
62 |
elif isinstance(m.act, nn.SiLU):
|
63 |
m.act = SiLU()
|
64 |
elif isinstance(m, models.yolo.Detect):
|
65 |
+
m.inplace = inplace
|
66 |
+
m.onnx_dynamic = dynamic
|
67 |
# m.forward = m.forward_export # assign forward (optional)
|
68 |
|
69 |
for _ in range(2):
|
70 |
y = model(img) # dry runs
|
71 |
+
print(f"\n{colorstr('PyTorch:')} starting from {weights} ({file_size(weights):.1f} MB)")
|
72 |
|
73 |
# TorchScript export -----------------------------------------------------------------------------------------------
|
74 |
+
if 'torchscript' in include or 'coreml' in include:
|
75 |
prefix = colorstr('TorchScript:')
|
76 |
try:
|
77 |
print(f'\n{prefix} starting export with torch {torch.__version__}...')
|
78 |
+
f = weights.replace('.pt', '.torchscript.pt') # filename
|
79 |
ts = torch.jit.trace(model, img, strict=False)
|
80 |
+
(optimize_for_mobile(ts) if optimize else ts).save(f)
|
81 |
print(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
|
82 |
except Exception as e:
|
83 |
print(f'{prefix} export failure: {e}')
|
84 |
|
85 |
# ONNX export ------------------------------------------------------------------------------------------------------
|
86 |
+
if 'onnx' in include:
|
87 |
prefix = colorstr('ONNX:')
|
88 |
try:
|
89 |
import onnx
|
90 |
|
91 |
print(f'{prefix} starting export with onnx {onnx.__version__}...')
|
92 |
+
f = weights.replace('.pt', '.onnx') # filename
|
93 |
+
torch.onnx.export(model, img, f, verbose=False, opset_version=opset_version,
|
94 |
+
training=torch.onnx.TrainingMode.TRAINING if train else torch.onnx.TrainingMode.EVAL,
|
95 |
+
do_constant_folding=not train,
|
96 |
input_names=['images'],
|
97 |
output_names=['output'],
|
98 |
dynamic_axes={'images': {0: 'batch', 2: 'height', 3: 'width'}, # shape(1,3,640,640)
|
99 |
'output': {0: 'batch', 1: 'anchors'} # shape(1,25200,85)
|
100 |
+
} if dynamic else None)
|
101 |
|
102 |
# Checks
|
103 |
model_onnx = onnx.load(f) # load onnx model
|
|
|
105 |
# print(onnx.helper.printable_graph(model_onnx.graph)) # print
|
106 |
|
107 |
# Simplify
|
108 |
+
if simplify:
|
109 |
try:
|
110 |
check_requirements(['onnx-simplifier'])
|
111 |
import onnxsim
|
|
|
113 |
print(f'{prefix} simplifying with onnx-simplifier {onnxsim.__version__}...')
|
114 |
model_onnx, check = onnxsim.simplify(
|
115 |
model_onnx,
|
116 |
+
dynamic_input_shape=dynamic,
|
117 |
+
input_shapes={'images': list(img.shape)} if dynamic else None)
|
118 |
assert check, 'assert check failed'
|
119 |
onnx.save(model_onnx, f)
|
120 |
except Exception as e:
|
|
|
124 |
print(f'{prefix} export failure: {e}')
|
125 |
|
126 |
# CoreML export ----------------------------------------------------------------------------------------------------
|
127 |
+
if 'coreml' in include:
|
128 |
prefix = colorstr('CoreML:')
|
129 |
try:
|
130 |
import coremltools as ct
|
131 |
|
132 |
print(f'{prefix} starting export with coremltools {ct.__version__}...')
|
133 |
+
assert train, 'CoreML exports should be placed in model.train() mode with `python export.py --train`'
|
134 |
model = ct.convert(ts, inputs=[ct.ImageType('image', shape=img.shape, scale=1 / 255.0, bias=[0, 0, 0])])
|
135 |
+
f = weights.replace('.pt', '.mlmodel') # filename
|
136 |
model.save(f)
|
137 |
print(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
|
138 |
except Exception as e:
|
|
|
140 |
|
141 |
# Finish
|
142 |
print(f'\nExport complete ({time.time() - t:.2f}s). Visualize with https://github.com/lutzroeder/netron.')
|
143 |
+
|
144 |
+
|
145 |
+
if __name__ == '__main__':
|
146 |
+
parser = argparse.ArgumentParser()
|
147 |
+
parser.add_argument('--weights', type=str, default='./yolov5s.pt', help='weights path')
|
148 |
+
parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='image (height, width)')
|
149 |
+
parser.add_argument('--batch-size', type=int, default=1, help='batch size')
|
150 |
+
parser.add_argument('--device', default='cpu', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
|
151 |
+
parser.add_argument('--include', nargs='+', default=['torchscript', 'onnx', 'coreml'], help='include formats')
|
152 |
+
parser.add_argument('--half', action='store_true', help='FP16 half-precision export')
|
153 |
+
parser.add_argument('--inplace', action='store_true', help='set YOLOv5 Detect() inplace=True')
|
154 |
+
parser.add_argument('--train', action='store_true', help='model.train() mode')
|
155 |
+
parser.add_argument('--optimize', action='store_true', help='TorchScript: optimize for mobile')
|
156 |
+
parser.add_argument('--dynamic', action='store_true', help='ONNX: dynamic axes')
|
157 |
+
parser.add_argument('--simplify', action='store_true', help='ONNX: simplify model')
|
158 |
+
parser.add_argument('--opset-version', type=int, default=12, help='ONNX: opset version')
|
159 |
+
opt = parser.parse_args()
|
160 |
+
print(opt)
|
161 |
+
set_logging()
|
162 |
+
|
163 |
+
export(**vars(opt))
|