glenn-jocher commited on
Commit
1b1681b
1 Parent(s): 9d7c778

Created using Colaboratory

Browse files
Files changed (1) hide show
  1. tutorial.ipynb +8 -8
tutorial.ipynb CHANGED
@@ -74,7 +74,7 @@
74
  "clear_output()\n",
75
  "print('Setup complete. Using torch %s %s' % (torch.__version__, torch.cuda.get_device_properties(0) if torch.cuda.is_available() else 'CPU'))"
76
  ],
77
- "execution_count": 1,
78
  "outputs": [
79
  {
80
  "output_type": "stream",
@@ -212,7 +212,7 @@
212
  "gdrive_download('1Y6Kou6kEB0ZEMCCpJSKStCor4KAReE43','coco2017val.zip') # val2017 dataset\n",
213
  "!mv ./coco ../ # move folder alongside /yolov5"
214
  ],
215
- "execution_count": 10,
216
  "outputs": [
217
  {
218
  "output_type": "stream",
@@ -238,7 +238,7 @@
238
  "# Run YOLOv5x on COCO val2017\n",
239
  "!python test.py --weights yolov5x.pt --data coco.yaml --img 672"
240
  ],
241
- "execution_count": 15,
242
  "outputs": [
243
  {
244
  "output_type": "stream",
@@ -352,7 +352,7 @@
352
  "gdrive_download('1n_oKgR81BJtqk75b00eAjdv03qVCQn2f','coco128.zip') # coco128 dataset\n",
353
  "!mv ./coco128 ../ # move folder alongside /yolov5"
354
  ],
355
- "execution_count": 16,
356
  "outputs": [
357
  {
358
  "output_type": "stream",
@@ -405,7 +405,7 @@
405
  "# Train YOLOv5s on coco128 for 3 epochs\n",
406
  "!python train.py --img 640 --batch 16 --epochs 3 --data coco128.yaml --cfg yolov5s.yaml --weights yolov5s.pt --nosave --cache"
407
  ],
408
- "execution_count": 24,
409
  "outputs": [
410
  {
411
  "output_type": "stream",
@@ -622,7 +622,7 @@
622
  "colab_type": "text"
623
  },
624
  "source": [
625
- "Training losses and performance metrics are saved to Tensorboard and also to a `runs/exp0/results.txt` logfile. `results.txt` is plotted as `results.png` after training completes. Partially completed `results.txt` files can be plotted with `from utils.utils import plot_results; plot_results()`. Here we show YOLOv5s trained on coco128 to 300 epochs, starting from scratch (orange), and from pretrained `yolov5s.pt` (blue)."
626
  ]
627
  },
628
  {
@@ -639,7 +639,7 @@
639
  "source": [
640
  "from utils.utils import plot_results; plot_results() # plot results.txt files as results.png"
641
  ],
642
- "execution_count": 29,
643
  "outputs": [
644
  {
645
  "output_type": "execute_result",
@@ -701,7 +701,7 @@
701
  "!rm -rf yolov5 && git clone https://github.com/ultralytics/yolov5\n",
702
  "%cd yolov5"
703
  ],
704
- "execution_count": 9,
705
  "outputs": []
706
  },
707
  {
 
74
  "clear_output()\n",
75
  "print('Setup complete. Using torch %s %s' % (torch.__version__, torch.cuda.get_device_properties(0) if torch.cuda.is_available() else 'CPU'))"
76
  ],
77
+ "execution_count": null,
78
  "outputs": [
79
  {
80
  "output_type": "stream",
 
212
  "gdrive_download('1Y6Kou6kEB0ZEMCCpJSKStCor4KAReE43','coco2017val.zip') # val2017 dataset\n",
213
  "!mv ./coco ../ # move folder alongside /yolov5"
214
  ],
215
+ "execution_count": null,
216
  "outputs": [
217
  {
218
  "output_type": "stream",
 
238
  "# Run YOLOv5x on COCO val2017\n",
239
  "!python test.py --weights yolov5x.pt --data coco.yaml --img 672"
240
  ],
241
+ "execution_count": null,
242
  "outputs": [
243
  {
244
  "output_type": "stream",
 
352
  "gdrive_download('1n_oKgR81BJtqk75b00eAjdv03qVCQn2f','coco128.zip') # coco128 dataset\n",
353
  "!mv ./coco128 ../ # move folder alongside /yolov5"
354
  ],
355
+ "execution_count": null,
356
  "outputs": [
357
  {
358
  "output_type": "stream",
 
405
  "# Train YOLOv5s on coco128 for 3 epochs\n",
406
  "!python train.py --img 640 --batch 16 --epochs 3 --data coco128.yaml --cfg yolov5s.yaml --weights yolov5s.pt --nosave --cache"
407
  ],
408
+ "execution_count": null,
409
  "outputs": [
410
  {
411
  "output_type": "stream",
 
622
  "colab_type": "text"
623
  },
624
  "source": [
625
+ "Training losses and performance metrics are saved to Tensorboard and also to a `runs/exp0/results.txt` logfile. `results.txt` is plotted as `results.png` after training completes. Partially completed `results.txt` files can be plotted with `from utils.utils import plot_results; plot_results()`. Here we show YOLOv5s trained on coco128 to 300 epochs, starting from scratch (blue), and from pretrained `yolov5s.pt` (orange)."
626
  ]
627
  },
628
  {
 
639
  "source": [
640
  "from utils.utils import plot_results; plot_results() # plot results.txt files as results.png"
641
  ],
642
+ "execution_count": null,
643
  "outputs": [
644
  {
645
  "output_type": "execute_result",
 
701
  "!rm -rf yolov5 && git clone https://github.com/ultralytics/yolov5\n",
702
  "%cd yolov5"
703
  ],
704
+ "execution_count": null,
705
  "outputs": []
706
  },
707
  {