glenn-jocher
commited on
Commit
β’
2e5c67e
1
Parent(s):
7b80545
Robust `scipy.cluster.vq.kmeans` too few points (#6668)
Browse files* Handle `scipy.cluster.vq.kmeans` too few points
Resolves #6664
* Update autoanchor.py
* Cleanup
- utils/autoanchor.py +7 -6
utils/autoanchor.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
# YOLOv5 π by Ultralytics, GPL-3.0 license
|
2 |
"""
|
3 |
-
|
4 |
"""
|
5 |
|
6 |
import random
|
@@ -81,6 +81,7 @@ def kmean_anchors(dataset='./data/coco128.yaml', n=9, img_size=640, thr=4.0, gen
|
|
81 |
"""
|
82 |
from scipy.cluster.vq import kmeans
|
83 |
|
|
|
84 |
thr = 1 / thr
|
85 |
|
86 |
def metric(k, wh): # compute metrics
|
@@ -121,14 +122,15 @@ def kmean_anchors(dataset='./data/coco128.yaml', n=9, img_size=640, thr=4.0, gen
|
|
121 |
if i:
|
122 |
LOGGER.info(f'{PREFIX}WARNING: Extremely small objects found. {i} of {len(wh0)} labels are < 3 pixels in size.')
|
123 |
wh = wh0[(wh0 >= 2.0).any(1)] # filter > 2 pixels
|
124 |
-
# wh = wh * (
|
125 |
|
126 |
# Kmeans calculation
|
127 |
LOGGER.info(f'{PREFIX}Running kmeans for {n} anchors on {len(wh)} points...')
|
128 |
s = wh.std(0) # sigmas for whitening
|
129 |
-
k
|
130 |
-
|
131 |
-
|
|
|
132 |
wh = torch.tensor(wh, dtype=torch.float32) # filtered
|
133 |
wh0 = torch.tensor(wh0, dtype=torch.float32) # unfiltered
|
134 |
k = print_results(k, verbose=False)
|
@@ -146,7 +148,6 @@ def kmean_anchors(dataset='./data/coco128.yaml', n=9, img_size=640, thr=4.0, gen
|
|
146 |
# fig.savefig('wh.png', dpi=200)
|
147 |
|
148 |
# Evolve
|
149 |
-
npr = np.random
|
150 |
f, sh, mp, s = anchor_fitness(k), k.shape, 0.9, 0.1 # fitness, generations, mutation prob, sigma
|
151 |
pbar = tqdm(range(gen), desc=f'{PREFIX}Evolving anchors with Genetic Algorithm:') # progress bar
|
152 |
for _ in pbar:
|
|
|
1 |
# YOLOv5 π by Ultralytics, GPL-3.0 license
|
2 |
"""
|
3 |
+
AutoAnchor utils
|
4 |
"""
|
5 |
|
6 |
import random
|
|
|
81 |
"""
|
82 |
from scipy.cluster.vq import kmeans
|
83 |
|
84 |
+
npr = np.random
|
85 |
thr = 1 / thr
|
86 |
|
87 |
def metric(k, wh): # compute metrics
|
|
|
122 |
if i:
|
123 |
LOGGER.info(f'{PREFIX}WARNING: Extremely small objects found. {i} of {len(wh0)} labels are < 3 pixels in size.')
|
124 |
wh = wh0[(wh0 >= 2.0).any(1)] # filter > 2 pixels
|
125 |
+
# wh = wh * (npr.rand(wh.shape[0], 1) * 0.9 + 0.1) # multiply by random scale 0-1
|
126 |
|
127 |
# Kmeans calculation
|
128 |
LOGGER.info(f'{PREFIX}Running kmeans for {n} anchors on {len(wh)} points...')
|
129 |
s = wh.std(0) # sigmas for whitening
|
130 |
+
k = kmeans(wh / s, n, iter=30)[0] * s # points
|
131 |
+
if len(k) != n: # kmeans may return fewer points than requested if wh is insufficient or too similar
|
132 |
+
LOGGER.warning(f'{PREFIX}WARNING: scipy.cluster.vq.kmeans returned only {len(k)} of {n} requested points')
|
133 |
+
k = np.sort(npr.rand(n * 2)).reshape(n, 2) * img_size # random init
|
134 |
wh = torch.tensor(wh, dtype=torch.float32) # filtered
|
135 |
wh0 = torch.tensor(wh0, dtype=torch.float32) # unfiltered
|
136 |
k = print_results(k, verbose=False)
|
|
|
148 |
# fig.savefig('wh.png', dpi=200)
|
149 |
|
150 |
# Evolve
|
|
|
151 |
f, sh, mp, s = anchor_fitness(k), k.shape, 0.9, 0.1 # fitness, generations, mutation prob, sigma
|
152 |
pbar = tqdm(range(gen), desc=f'{PREFIX}Evolving anchors with Genetic Algorithm:') # progress bar
|
153 |
for _ in pbar:
|