Multiple TF export improvements (#4824)
Browse files* Add fused conv support
* Set all saved_model values to non trainable
* Fix TFLite fp16 model export
* Fix int8 TFLite conversion
- export.py +5 -2
- models/tf.py +3 -2
export.py
CHANGED
@@ -145,6 +145,7 @@ def export_saved_model(model, im, file, dynamic,
|
|
145 |
inputs = keras.Input(shape=(*imgsz, 3), batch_size=None if dynamic else batch_size)
|
146 |
outputs = tf_model.predict(inputs, tf_nms, agnostic_nms, topk_per_class, topk_all, iou_thres, conf_thres)
|
147 |
keras_model = keras.Model(inputs=inputs, outputs=outputs)
|
|
|
148 |
keras_model.summary()
|
149 |
keras_model.save(f, save_format='tf')
|
150 |
|
@@ -183,15 +184,17 @@ def export_tflite(keras_model, im, file, int8, data, ncalib, prefix=colorstr('Te
|
|
183 |
|
184 |
print(f'\n{prefix} starting export with tensorflow {tf.__version__}...')
|
185 |
batch_size, ch, *imgsz = list(im.shape) # BCHW
|
186 |
-
f = file.
|
187 |
|
188 |
converter = tf.lite.TFLiteConverter.from_keras_model(keras_model)
|
189 |
converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS]
|
|
|
190 |
converter.optimizations = [tf.lite.Optimize.DEFAULT]
|
191 |
if int8:
|
192 |
dataset = LoadImages(check_dataset(data)['train'], img_size=imgsz, auto=False) # representative data
|
193 |
converter.representative_dataset = lambda: representative_dataset_gen(dataset, ncalib)
|
194 |
converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8]
|
|
|
195 |
converter.inference_input_type = tf.uint8 # or tf.int8
|
196 |
converter.inference_output_type = tf.uint8 # or tf.int8
|
197 |
converter.experimental_new_quantizer = False
|
@@ -249,7 +252,7 @@ def run(data=ROOT / 'data/coco128.yaml', # 'dataset.yaml path'
|
|
249 |
# Load PyTorch model
|
250 |
device = select_device(device)
|
251 |
assert not (device.type == 'cpu' and half), '--half only compatible with GPU export, i.e. use --device 0'
|
252 |
-
model = attempt_load(weights, map_location=device, inplace=True, fuse=
|
253 |
nc, names = model.nc, model.names # number of classes, class names
|
254 |
|
255 |
# Input
|
|
|
145 |
inputs = keras.Input(shape=(*imgsz, 3), batch_size=None if dynamic else batch_size)
|
146 |
outputs = tf_model.predict(inputs, tf_nms, agnostic_nms, topk_per_class, topk_all, iou_thres, conf_thres)
|
147 |
keras_model = keras.Model(inputs=inputs, outputs=outputs)
|
148 |
+
keras_model.trainable = False
|
149 |
keras_model.summary()
|
150 |
keras_model.save(f, save_format='tf')
|
151 |
|
|
|
184 |
|
185 |
print(f'\n{prefix} starting export with tensorflow {tf.__version__}...')
|
186 |
batch_size, ch, *imgsz = list(im.shape) # BCHW
|
187 |
+
f = str(file).replace('.pt', '-fp16.tflite')
|
188 |
|
189 |
converter = tf.lite.TFLiteConverter.from_keras_model(keras_model)
|
190 |
converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS]
|
191 |
+
converter.target_spec.supported_types = [tf.float16]
|
192 |
converter.optimizations = [tf.lite.Optimize.DEFAULT]
|
193 |
if int8:
|
194 |
dataset = LoadImages(check_dataset(data)['train'], img_size=imgsz, auto=False) # representative data
|
195 |
converter.representative_dataset = lambda: representative_dataset_gen(dataset, ncalib)
|
196 |
converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8]
|
197 |
+
converter.target_spec.supported_types = []
|
198 |
converter.inference_input_type = tf.uint8 # or tf.int8
|
199 |
converter.inference_output_type = tf.uint8 # or tf.int8
|
200 |
converter.experimental_new_quantizer = False
|
|
|
252 |
# Load PyTorch model
|
253 |
device = select_device(device)
|
254 |
assert not (device.type == 'cpu' and half), '--half only compatible with GPU export, i.e. use --device 0'
|
255 |
+
model = attempt_load(weights, map_location=device, inplace=True, fuse=True) # load FP32 model
|
256 |
nc, names = model.nc, model.names # number of classes, class names
|
257 |
|
258 |
# Input
|
models/tf.py
CHANGED
@@ -70,8 +70,9 @@ class TFConv(keras.layers.Layer):
|
|
70 |
# see https://stackoverflow.com/questions/52975843/comparing-conv2d-with-padding-between-tensorflow-and-pytorch
|
71 |
|
72 |
conv = keras.layers.Conv2D(
|
73 |
-
c2, k, s, 'SAME' if s == 1 else 'VALID', use_bias=False,
|
74 |
-
kernel_initializer=keras.initializers.Constant(w.conv.weight.permute(2, 3, 1, 0).numpy())
|
|
|
75 |
self.conv = conv if s == 1 else keras.Sequential([TFPad(autopad(k, p)), conv])
|
76 |
self.bn = TFBN(w.bn) if hasattr(w, 'bn') else tf.identity
|
77 |
|
|
|
70 |
# see https://stackoverflow.com/questions/52975843/comparing-conv2d-with-padding-between-tensorflow-and-pytorch
|
71 |
|
72 |
conv = keras.layers.Conv2D(
|
73 |
+
c2, k, s, 'SAME' if s == 1 else 'VALID', use_bias=False if hasattr(w, 'bn') else True,
|
74 |
+
kernel_initializer=keras.initializers.Constant(w.conv.weight.permute(2, 3, 1, 0).numpy()),
|
75 |
+
bias_initializer='zeros' if hasattr(w, 'bn') else keras.initializers.Constant(w.conv.bias.numpy()))
|
76 |
self.conv = conv if s == 1 else keras.Sequential([TFPad(autopad(k, p)), conv])
|
77 |
self.bn = TFBN(w.bn) if hasattr(w, 'bn') else tf.identity
|
78 |
|