glenn-jocher
commited on
Commit
•
4052603
1
Parent(s):
afe1df3
AutoAnchor update - improvement check
Browse files- utils/utils.py +30 -15
utils/utils.py
CHANGED
@@ -58,17 +58,24 @@ def check_anchors(dataset, model, thr=4.0, imgsz=640):
|
|
58 |
anchors = model.module.model[-1].anchor_grid if hasattr(model, 'module') else model.model[-1].anchor_grid
|
59 |
shapes = imgsz * dataset.shapes / dataset.shapes.max(1, keepdims=True)
|
60 |
wh = torch.tensor(np.concatenate([l[:, 3:5] * s for s, l in zip(shapes, dataset.labels)])).float() # wh
|
61 |
-
ratio = wh[:, None] / anchors.view(-1, 2).cpu()[None] # ratio
|
62 |
-
m = torch.max(ratio, 1. / ratio).max(2)[0] # max ratio
|
63 |
-
bpr = (m.min(1)[0] < thr).float().mean() # best possible recall
|
64 |
-
# mr = (m < thr).float().mean() # match ratio
|
65 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
print('Best Possible Recall (BPR) = %.3f' % bpr, end='')
|
67 |
if bpr < 0.99: # threshold to recompute
|
68 |
-
print('.
|
69 |
new_anchors = kmean_anchors(dataset, n=9, img_size=640, thr=4.0, gen=1000, verbose=False)
|
70 |
-
|
71 |
-
|
|
|
|
|
|
|
|
|
72 |
print('') # newline
|
73 |
|
74 |
|
@@ -712,19 +719,19 @@ def kmean_anchors(path='./data/coco128.yaml', n=9, img_size=640, thr=4.0, gen=10
|
|
712 |
"""
|
713 |
thr = 1. / thr
|
714 |
|
715 |
-
def metric(k): # compute metrics
|
716 |
r = wh[:, None] / k[None]
|
717 |
x = torch.min(r, 1. / r).min(2)[0] # ratio metric
|
718 |
# x = wh_iou(wh, torch.tensor(k)) # iou metric
|
719 |
return x, x.max(1)[0] # x, best_x
|
720 |
|
721 |
def fitness(k): # mutation fitness
|
722 |
-
_, best = metric(torch.tensor(k, dtype=torch.float32))
|
723 |
return (best * (best > thr).float()).mean() # fitness
|
724 |
|
725 |
def print_results(k):
|
726 |
k = k[np.argsort(k.prod(1))] # sort small to large
|
727 |
-
x, best = metric(k)
|
728 |
bpr, aat = (best > thr).float().mean(), (x > thr).float().mean() * n # best possible recall, anch > thr
|
729 |
print('thr=%.2f: %.3f best possible recall, %.2f anchors past thr' % (thr, bpr, aat))
|
730 |
print('n=%g, img_size=%s, metric_all=%.3f/%.3f-mean/best, past_thr=%.3f-mean: ' %
|
@@ -743,8 +750,14 @@ def kmean_anchors(path='./data/coco128.yaml', n=9, img_size=640, thr=4.0, gen=10
|
|
743 |
|
744 |
# Get label wh
|
745 |
shapes = img_size * dataset.shapes / dataset.shapes.max(1, keepdims=True)
|
746 |
-
|
747 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
748 |
|
749 |
# Kmeans calculation
|
750 |
from scipy.cluster.vq import kmeans
|
@@ -752,7 +765,8 @@ def kmean_anchors(path='./data/coco128.yaml', n=9, img_size=640, thr=4.0, gen=10
|
|
752 |
s = wh.std(0) # sigmas for whitening
|
753 |
k, dist = kmeans(wh / s, n, iter=30) # points, mean distance
|
754 |
k *= s
|
755 |
-
wh = torch.tensor(wh, dtype=torch.float32)
|
|
|
756 |
k = print_results(k)
|
757 |
|
758 |
# Plot
|
@@ -781,8 +795,8 @@ def kmean_anchors(path='./data/coco128.yaml', n=9, img_size=640, thr=4.0, gen=10
|
|
781 |
f, k = fg, kg.copy()
|
782 |
if verbose:
|
783 |
print_results(k)
|
784 |
-
|
785 |
-
return k
|
786 |
|
787 |
|
788 |
def print_mutation(hyp, results, bucket=''):
|
@@ -1099,6 +1113,7 @@ def plot_labels(labels):
|
|
1099 |
ax[2].set_xlabel('width')
|
1100 |
ax[2].set_ylabel('height')
|
1101 |
plt.savefig('labels.png', dpi=200)
|
|
|
1102 |
|
1103 |
|
1104 |
def plot_evolution_results(hyp): # from utils.utils import *; plot_evolution_results(hyp)
|
|
|
58 |
anchors = model.module.model[-1].anchor_grid if hasattr(model, 'module') else model.model[-1].anchor_grid
|
59 |
shapes = imgsz * dataset.shapes / dataset.shapes.max(1, keepdims=True)
|
60 |
wh = torch.tensor(np.concatenate([l[:, 3:5] * s for s, l in zip(shapes, dataset.labels)])).float() # wh
|
|
|
|
|
|
|
|
|
61 |
|
62 |
+
def metric(k): # compute metric
|
63 |
+
r = wh[:, None] / k[None]
|
64 |
+
x = torch.min(r, 1. / r).min(2)[0] # ratio metric
|
65 |
+
best = x.max(1)[0] # best_x
|
66 |
+
return (best > 1. / thr).float().mean() # best possible recall
|
67 |
+
|
68 |
+
bpr = metric(anchors.clone().cpu().view(-1, 2))
|
69 |
print('Best Possible Recall (BPR) = %.3f' % bpr, end='')
|
70 |
if bpr < 0.99: # threshold to recompute
|
71 |
+
print('. Attempting to generate improved anchors, please wait...' % bpr)
|
72 |
new_anchors = kmean_anchors(dataset, n=9, img_size=640, thr=4.0, gen=1000, verbose=False)
|
73 |
+
new_bpr = metric(new_anchors.reshape(-1, 2))
|
74 |
+
if new_bpr > bpr:
|
75 |
+
anchors[:] = torch.tensor(new_anchors).view_as(anchors).type_as(anchors)
|
76 |
+
print('New anchors saved to model. Update model *.yaml to use these anchors in the future.')
|
77 |
+
else:
|
78 |
+
print('Original anchors better than new anchors. Proceeding with original anchors.')
|
79 |
print('') # newline
|
80 |
|
81 |
|
|
|
719 |
"""
|
720 |
thr = 1. / thr
|
721 |
|
722 |
+
def metric(k, wh): # compute metrics
|
723 |
r = wh[:, None] / k[None]
|
724 |
x = torch.min(r, 1. / r).min(2)[0] # ratio metric
|
725 |
# x = wh_iou(wh, torch.tensor(k)) # iou metric
|
726 |
return x, x.max(1)[0] # x, best_x
|
727 |
|
728 |
def fitness(k): # mutation fitness
|
729 |
+
_, best = metric(torch.tensor(k, dtype=torch.float32), wh)
|
730 |
return (best * (best > thr).float()).mean() # fitness
|
731 |
|
732 |
def print_results(k):
|
733 |
k = k[np.argsort(k.prod(1))] # sort small to large
|
734 |
+
x, best = metric(k, wh0)
|
735 |
bpr, aat = (best > thr).float().mean(), (x > thr).float().mean() * n # best possible recall, anch > thr
|
736 |
print('thr=%.2f: %.3f best possible recall, %.2f anchors past thr' % (thr, bpr, aat))
|
737 |
print('n=%g, img_size=%s, metric_all=%.3f/%.3f-mean/best, past_thr=%.3f-mean: ' %
|
|
|
750 |
|
751 |
# Get label wh
|
752 |
shapes = img_size * dataset.shapes / dataset.shapes.max(1, keepdims=True)
|
753 |
+
wh0 = np.concatenate([l[:, 3:5] * s for s, l in zip(shapes, dataset.labels)]) # wh
|
754 |
+
|
755 |
+
# Filter
|
756 |
+
i = (wh0 < 4.0).any(1).sum()
|
757 |
+
if i:
|
758 |
+
print('WARNING: Extremely small objects found. '
|
759 |
+
'%g of %g labels are < 4 pixels in width or height.' % (i, len(wh0)))
|
760 |
+
wh = wh0[(wh0 >= 4.0).any(1)] # filter > 2 pixels
|
761 |
|
762 |
# Kmeans calculation
|
763 |
from scipy.cluster.vq import kmeans
|
|
|
765 |
s = wh.std(0) # sigmas for whitening
|
766 |
k, dist = kmeans(wh / s, n, iter=30) # points, mean distance
|
767 |
k *= s
|
768 |
+
wh = torch.tensor(wh, dtype=torch.float32) # filtered
|
769 |
+
wh0 = torch.tensor(wh0, dtype=torch.float32) # unflitered
|
770 |
k = print_results(k)
|
771 |
|
772 |
# Plot
|
|
|
795 |
f, k = fg, kg.copy()
|
796 |
if verbose:
|
797 |
print_results(k)
|
798 |
+
|
799 |
+
return print_results(k)
|
800 |
|
801 |
|
802 |
def print_mutation(hyp, results, bucket=''):
|
|
|
1113 |
ax[2].set_xlabel('width')
|
1114 |
ax[2].set_ylabel('height')
|
1115 |
plt.savefig('labels.png', dpi=200)
|
1116 |
+
plt.close()
|
1117 |
|
1118 |
|
1119 |
def plot_evolution_results(hyp): # from utils.utils import *; plot_evolution_results(hyp)
|