change weights dir (wdir) to be unique to each run, under log_dir
Browse files
train.py
CHANGED
@@ -18,11 +18,6 @@ except:
|
|
18 |
print('Apex recommended for faster mixed precision training: https://github.com/NVIDIA/apex')
|
19 |
mixed_precision = False # not installed
|
20 |
|
21 |
-
wdir = 'weights' + os.sep # weights dir
|
22 |
-
os.makedirs(wdir, exist_ok=True)
|
23 |
-
last = wdir + 'last.pt'
|
24 |
-
best = wdir + 'best.pt'
|
25 |
-
results_file = 'results.txt'
|
26 |
|
27 |
# Hyperparameters
|
28 |
hyp = {'lr0': 0.01, # initial learning rate (SGD=1E-2, Adam=1E-3)
|
@@ -59,13 +54,21 @@ if hyp['fl_gamma']:
|
|
59 |
|
60 |
|
61 |
def train(hyp):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
epochs = opt.epochs # 300
|
63 |
batch_size = opt.batch_size # 64
|
64 |
weights = opt.weights # initial training weights
|
65 |
|
66 |
-
#write all results to the tb log_dir, so all data from one run is together
|
67 |
-
log_dir = tb_writer.log_dir
|
68 |
-
|
69 |
# Configure
|
70 |
init_seeds(1)
|
71 |
with open(opt.data) as f:
|
|
|
18 |
print('Apex recommended for faster mixed precision training: https://github.com/NVIDIA/apex')
|
19 |
mixed_precision = False # not installed
|
20 |
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
# Hyperparameters
|
23 |
hyp = {'lr0': 0.01, # initial learning rate (SGD=1E-2, Adam=1E-3)
|
|
|
54 |
|
55 |
|
56 |
def train(hyp):
|
57 |
+
#write all results to the tb log_dir, so all data from one run is together
|
58 |
+
log_dir = tb_writer.log_dir
|
59 |
+
|
60 |
+
#weights dir unique to each experiment
|
61 |
+
wdir = os.path.join(log_dir, 'weights') + os.sep # weights dir
|
62 |
+
|
63 |
+
os.makedirs(wdir, exist_ok=True)
|
64 |
+
last = wdir + 'last.pt'
|
65 |
+
best = wdir + 'best.pt'
|
66 |
+
results_file = 'results.txt'
|
67 |
+
|
68 |
epochs = opt.epochs # 300
|
69 |
batch_size = opt.batch_size # 64
|
70 |
weights = opt.weights # initial training weights
|
71 |
|
|
|
|
|
|
|
72 |
# Configure
|
73 |
init_seeds(1)
|
74 |
with open(opt.data) as f:
|