glenn-jocher
commited on
Commit
•
4447f4b
1
Parent(s):
5e0b90d
--resume to same runs/exp directory (#765)
Browse files* initial commit
* add weight backup dir on resume
train.py
CHANGED
@@ -1,9 +1,10 @@
|
|
1 |
import argparse
|
|
|
2 |
import math
|
3 |
import os
|
4 |
import random
|
|
|
5 |
import time
|
6 |
-
import logging
|
7 |
from pathlib import Path
|
8 |
|
9 |
import numpy as np
|
@@ -34,10 +35,10 @@ logger = logging.getLogger(__name__)
|
|
34 |
def train(hyp, opt, device, tb_writer=None):
|
35 |
logger.info(f'Hyperparameters {hyp}')
|
36 |
log_dir = Path(tb_writer.log_dir) if tb_writer else Path(opt.logdir) / 'evolve' # logging directory
|
37 |
-
wdir =
|
38 |
os.makedirs(wdir, exist_ok=True)
|
39 |
-
last = wdir
|
40 |
-
best = wdir
|
41 |
results_file = str(log_dir / 'results.txt')
|
42 |
epochs, batch_size, total_batch_size, weights, rank = \
|
43 |
opt.epochs, opt.batch_size, opt.total_batch_size, opt.weights, opt.global_rank
|
@@ -131,6 +132,7 @@ def train(hyp, opt, device, tb_writer=None):
|
|
131 |
start_epoch = ckpt['epoch'] + 1
|
132 |
if opt.resume:
|
133 |
assert start_epoch > 0, '%s training to %g epochs is finished, nothing to resume.' % (weights, epochs)
|
|
|
134 |
if epochs < start_epoch:
|
135 |
logger.info('%s has been trained for %g epochs. Fine-tuning for %g additional epochs.' %
|
136 |
(weights, ckpt['epoch'], epochs))
|
@@ -365,13 +367,13 @@ def train(hyp, opt, device, tb_writer=None):
|
|
365 |
if rank in [-1, 0]:
|
366 |
# Strip optimizers
|
367 |
n = ('_' if len(opt.name) and not opt.name.isnumeric() else '') + opt.name
|
368 |
-
fresults, flast, fbest = 'results%s.txt' % n, wdir
|
369 |
-
for f1, f2 in zip([wdir
|
370 |
if os.path.exists(f1):
|
371 |
os.rename(f1, f2) # rename
|
372 |
-
|
373 |
-
|
374 |
-
|
375 |
# Finish
|
376 |
if not opt.evolve:
|
377 |
plot_results(save_dir=log_dir) # save as results.png
|
@@ -421,8 +423,9 @@ if __name__ == '__main__':
|
|
421 |
# Resume
|
422 |
if opt.resume: # resume an interrupted run
|
423 |
ckpt = opt.resume if isinstance(opt.resume, str) else get_latest_run() # specified or most recent path
|
|
|
424 |
assert os.path.isfile(ckpt), 'ERROR: --resume checkpoint does not exist'
|
425 |
-
with open(
|
426 |
opt = argparse.Namespace(**yaml.load(f, Loader=yaml.FullLoader)) # replace
|
427 |
opt.cfg, opt.weights, opt.resume = '', ckpt, True
|
428 |
logger.info('Resuming training from %s' % ckpt)
|
@@ -432,6 +435,7 @@ if __name__ == '__main__':
|
|
432 |
opt.data, opt.cfg, opt.hyp = check_file(opt.data), check_file(opt.cfg), check_file(opt.hyp) # check files
|
433 |
assert len(opt.cfg) or len(opt.weights), 'either --cfg or --weights must be specified'
|
434 |
opt.img_size.extend([opt.img_size[-1]] * (2 - len(opt.img_size))) # extend to 2 sizes (train, test)
|
|
|
435 |
|
436 |
device = select_device(opt.device, batch_size=opt.batch_size)
|
437 |
|
@@ -453,7 +457,7 @@ if __name__ == '__main__':
|
|
453 |
tb_writer = None
|
454 |
if opt.global_rank in [-1, 0]:
|
455 |
logger.info('Start Tensorboard with "tensorboard --logdir %s", view at http://localhost:6006/' % opt.logdir)
|
456 |
-
tb_writer = SummaryWriter(log_dir=
|
457 |
|
458 |
train(hyp, opt, device, tb_writer)
|
459 |
|
|
|
1 |
import argparse
|
2 |
+
import logging
|
3 |
import math
|
4 |
import os
|
5 |
import random
|
6 |
+
import shutil
|
7 |
import time
|
|
|
8 |
from pathlib import Path
|
9 |
|
10 |
import numpy as np
|
|
|
35 |
def train(hyp, opt, device, tb_writer=None):
|
36 |
logger.info(f'Hyperparameters {hyp}')
|
37 |
log_dir = Path(tb_writer.log_dir) if tb_writer else Path(opt.logdir) / 'evolve' # logging directory
|
38 |
+
wdir = log_dir / 'weights' # weights directory
|
39 |
os.makedirs(wdir, exist_ok=True)
|
40 |
+
last = wdir / 'last.pt'
|
41 |
+
best = wdir / 'best.pt'
|
42 |
results_file = str(log_dir / 'results.txt')
|
43 |
epochs, batch_size, total_batch_size, weights, rank = \
|
44 |
opt.epochs, opt.batch_size, opt.total_batch_size, opt.weights, opt.global_rank
|
|
|
132 |
start_epoch = ckpt['epoch'] + 1
|
133 |
if opt.resume:
|
134 |
assert start_epoch > 0, '%s training to %g epochs is finished, nothing to resume.' % (weights, epochs)
|
135 |
+
shutil.copytree(wdir, wdir.parent / f'weights_backup_epoch{start_epoch - 1}') # save previous weights
|
136 |
if epochs < start_epoch:
|
137 |
logger.info('%s has been trained for %g epochs. Fine-tuning for %g additional epochs.' %
|
138 |
(weights, ckpt['epoch'], epochs))
|
|
|
367 |
if rank in [-1, 0]:
|
368 |
# Strip optimizers
|
369 |
n = ('_' if len(opt.name) and not opt.name.isnumeric() else '') + opt.name
|
370 |
+
fresults, flast, fbest = 'results%s.txt' % n, wdir / f'last{n}.pt', wdir / f'best{n}.pt'
|
371 |
+
for f1, f2 in zip([wdir / 'last.pt', wdir / 'best.pt', 'results.txt'], [flast, fbest, fresults]):
|
372 |
if os.path.exists(f1):
|
373 |
os.rename(f1, f2) # rename
|
374 |
+
if str(f2).endswith('.pt'): # is *.pt
|
375 |
+
strip_optimizer(f2) # strip optimizer
|
376 |
+
os.system('gsutil cp %s gs://%s/weights' % (f2, opt.bucket)) if opt.bucket else None # upload
|
377 |
# Finish
|
378 |
if not opt.evolve:
|
379 |
plot_results(save_dir=log_dir) # save as results.png
|
|
|
423 |
# Resume
|
424 |
if opt.resume: # resume an interrupted run
|
425 |
ckpt = opt.resume if isinstance(opt.resume, str) else get_latest_run() # specified or most recent path
|
426 |
+
log_dir = Path(ckpt).parent.parent # runs/exp0
|
427 |
assert os.path.isfile(ckpt), 'ERROR: --resume checkpoint does not exist'
|
428 |
+
with open(log_dir / 'opt.yaml') as f:
|
429 |
opt = argparse.Namespace(**yaml.load(f, Loader=yaml.FullLoader)) # replace
|
430 |
opt.cfg, opt.weights, opt.resume = '', ckpt, True
|
431 |
logger.info('Resuming training from %s' % ckpt)
|
|
|
435 |
opt.data, opt.cfg, opt.hyp = check_file(opt.data), check_file(opt.cfg), check_file(opt.hyp) # check files
|
436 |
assert len(opt.cfg) or len(opt.weights), 'either --cfg or --weights must be specified'
|
437 |
opt.img_size.extend([opt.img_size[-1]] * (2 - len(opt.img_size))) # extend to 2 sizes (train, test)
|
438 |
+
log_dir = increment_dir(Path(opt.logdir) / 'exp', opt.name) # runs/exp1
|
439 |
|
440 |
device = select_device(opt.device, batch_size=opt.batch_size)
|
441 |
|
|
|
457 |
tb_writer = None
|
458 |
if opt.global_rank in [-1, 0]:
|
459 |
logger.info('Start Tensorboard with "tensorboard --logdir %s", view at http://localhost:6006/' % opt.logdir)
|
460 |
+
tb_writer = SummaryWriter(log_dir=log_dir) # runs/exp0
|
461 |
|
462 |
train(hyp, opt, device, tb_writer)
|
463 |
|