glenn-jocher commited on
Commit
4e65052
β€’
1 Parent(s): 01cdb76

Created using Colaboratory

Browse files
Files changed (1) hide show
  1. tutorial.ipynb +106 -318
tutorial.ipynb CHANGED
@@ -6,7 +6,6 @@
6
  "name": "YOLOv5 Tutorial",
7
  "provenance": [],
8
  "collapsed_sections": [],
9
- "toc_visible": true,
10
  "include_colab_link": true
11
  },
12
  "kernelspec": {
@@ -16,7 +15,7 @@
16
  "accelerator": "GPU",
17
  "widgets": {
18
  "application/vnd.jupyter.widget-state+json": {
19
- "2e915d9016c846e095e382b6a02ee773": {
20
  "model_module": "@jupyter-widgets/controls",
21
  "model_name": "HBoxModel",
22
  "model_module_version": "1.5.0",
@@ -29,15 +28,16 @@
29
  "_view_count": null,
30
  "_view_module_version": "1.5.0",
31
  "box_style": "",
32
- "layout": "IPY_MODEL_cb7fc3a5c6cc4fde8d2c83e594a7c86e",
33
  "_model_module": "@jupyter-widgets/controls",
34
  "children": [
35
- "IPY_MODEL_ac3edef4e3434f4587e6cbf8aa048770",
36
- "IPY_MODEL_853ac234cc2a4236946fc516871e10eb"
 
37
  ]
38
  }
39
  },
40
- "cb7fc3a5c6cc4fde8d2c83e594a7c86e": {
41
  "model_module": "@jupyter-widgets/base",
42
  "model_name": "LayoutModel",
43
  "model_module_version": "1.2.0",
@@ -89,15 +89,36 @@
89
  "left": null
90
  }
91
  },
92
- "ac3edef4e3434f4587e6cbf8aa048770": {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93
  "model_module": "@jupyter-widgets/controls",
94
  "model_name": "FloatProgressModel",
95
  "model_module_version": "1.5.0",
96
  "state": {
97
  "_view_name": "ProgressView",
98
- "style": "IPY_MODEL_13842ca90c0047e584b8d68d99dad2b1",
99
  "_dom_classes": [],
100
- "description": "100%",
101
  "_model_name": "FloatProgressModel",
102
  "bar_style": "success",
103
  "max": 818322941,
@@ -110,99 +131,31 @@
110
  "min": 0,
111
  "description_tooltip": null,
112
  "_model_module": "@jupyter-widgets/controls",
113
- "layout": "IPY_MODEL_f454999c3a924c7bad0746fb453dec36"
114
  }
115
  },
116
- "853ac234cc2a4236946fc516871e10eb": {
117
  "model_module": "@jupyter-widgets/controls",
118
  "model_name": "HTMLModel",
119
  "model_module_version": "1.5.0",
120
  "state": {
121
  "_view_name": "HTMLView",
122
- "style": "IPY_MODEL_f94a7ca8c1f04761bf38fdc5f99664b8",
123
  "_dom_classes": [],
124
  "description": "",
125
  "_model_name": "HTMLModel",
126
  "placeholder": "​",
127
  "_view_module": "@jupyter-widgets/controls",
128
  "_model_module_version": "1.5.0",
129
- "value": " 780M/780M [03:59<00:00, 3.42MB/s]",
130
  "_view_count": null,
131
  "_view_module_version": "1.5.0",
132
  "description_tooltip": null,
133
  "_model_module": "@jupyter-widgets/controls",
134
- "layout": "IPY_MODEL_9da1a23b042c41618dd14b0e30aa7cbe"
135
  }
136
  },
137
- "13842ca90c0047e584b8d68d99dad2b1": {
138
- "model_module": "@jupyter-widgets/controls",
139
- "model_name": "ProgressStyleModel",
140
- "model_module_version": "1.5.0",
141
- "state": {
142
- "_view_name": "StyleView",
143
- "_model_name": "ProgressStyleModel",
144
- "description_width": "initial",
145
- "_view_module": "@jupyter-widgets/base",
146
- "_model_module_version": "1.5.0",
147
- "_view_count": null,
148
- "_view_module_version": "1.2.0",
149
- "bar_color": null,
150
- "_model_module": "@jupyter-widgets/controls"
151
- }
152
- },
153
- "f454999c3a924c7bad0746fb453dec36": {
154
- "model_module": "@jupyter-widgets/base",
155
- "model_name": "LayoutModel",
156
- "model_module_version": "1.2.0",
157
- "state": {
158
- "_view_name": "LayoutView",
159
- "grid_template_rows": null,
160
- "right": null,
161
- "justify_content": null,
162
- "_view_module": "@jupyter-widgets/base",
163
- "overflow": null,
164
- "_model_module_version": "1.2.0",
165
- "_view_count": null,
166
- "flex_flow": null,
167
- "width": null,
168
- "min_width": null,
169
- "border": null,
170
- "align_items": null,
171
- "bottom": null,
172
- "_model_module": "@jupyter-widgets/base",
173
- "top": null,
174
- "grid_column": null,
175
- "overflow_y": null,
176
- "overflow_x": null,
177
- "grid_auto_flow": null,
178
- "grid_area": null,
179
- "grid_template_columns": null,
180
- "flex": null,
181
- "_model_name": "LayoutModel",
182
- "justify_items": null,
183
- "grid_row": null,
184
- "max_height": null,
185
- "align_content": null,
186
- "visibility": null,
187
- "align_self": null,
188
- "height": null,
189
- "min_height": null,
190
- "padding": null,
191
- "grid_auto_rows": null,
192
- "grid_gap": null,
193
- "max_width": null,
194
- "order": null,
195
- "_view_module_version": "1.2.0",
196
- "grid_template_areas": null,
197
- "object_position": null,
198
- "object_fit": null,
199
- "grid_auto_columns": null,
200
- "margin": null,
201
- "display": null,
202
- "left": null
203
- }
204
- },
205
- "f94a7ca8c1f04761bf38fdc5f99664b8": {
206
  "model_module": "@jupyter-widgets/controls",
207
  "model_name": "DescriptionStyleModel",
208
  "model_module_version": "1.5.0",
@@ -217,7 +170,7 @@
217
  "_model_module": "@jupyter-widgets/controls"
218
  }
219
  },
220
- "9da1a23b042c41618dd14b0e30aa7cbe": {
221
  "model_module": "@jupyter-widgets/base",
222
  "model_name": "LayoutModel",
223
  "model_module_version": "1.2.0",
@@ -269,132 +222,14 @@
269
  "left": null
270
  }
271
  },
272
- "6ff8a710ded44391a624dec5c460b771": {
273
- "model_module": "@jupyter-widgets/controls",
274
- "model_name": "HBoxModel",
275
- "model_module_version": "1.5.0",
276
- "state": {
277
- "_view_name": "HBoxView",
278
- "_dom_classes": [],
279
- "_model_name": "HBoxModel",
280
- "_view_module": "@jupyter-widgets/controls",
281
- "_model_module_version": "1.5.0",
282
- "_view_count": null,
283
- "_view_module_version": "1.5.0",
284
- "box_style": "",
285
- "layout": "IPY_MODEL_3c19729b51cd45d4848035da06e96ff8",
286
- "_model_module": "@jupyter-widgets/controls",
287
- "children": [
288
- "IPY_MODEL_23b2f0ae3d46438c8de375987c77f580",
289
- "IPY_MODEL_dd9498c321a9422da6faf17a0be026d4"
290
- ]
291
- }
292
- },
293
- "3c19729b51cd45d4848035da06e96ff8": {
294
- "model_module": "@jupyter-widgets/base",
295
- "model_name": "LayoutModel",
296
- "model_module_version": "1.2.0",
297
- "state": {
298
- "_view_name": "LayoutView",
299
- "grid_template_rows": null,
300
- "right": null,
301
- "justify_content": null,
302
- "_view_module": "@jupyter-widgets/base",
303
- "overflow": null,
304
- "_model_module_version": "1.2.0",
305
- "_view_count": null,
306
- "flex_flow": null,
307
- "width": null,
308
- "min_width": null,
309
- "border": null,
310
- "align_items": null,
311
- "bottom": null,
312
- "_model_module": "@jupyter-widgets/base",
313
- "top": null,
314
- "grid_column": null,
315
- "overflow_y": null,
316
- "overflow_x": null,
317
- "grid_auto_flow": null,
318
- "grid_area": null,
319
- "grid_template_columns": null,
320
- "flex": null,
321
- "_model_name": "LayoutModel",
322
- "justify_items": null,
323
- "grid_row": null,
324
- "max_height": null,
325
- "align_content": null,
326
- "visibility": null,
327
- "align_self": null,
328
- "height": null,
329
- "min_height": null,
330
- "padding": null,
331
- "grid_auto_rows": null,
332
- "grid_gap": null,
333
- "max_width": null,
334
- "order": null,
335
- "_view_module_version": "1.2.0",
336
- "grid_template_areas": null,
337
- "object_position": null,
338
- "object_fit": null,
339
- "grid_auto_columns": null,
340
- "margin": null,
341
- "display": null,
342
- "left": null
343
- }
344
- },
345
- "23b2f0ae3d46438c8de375987c77f580": {
346
- "model_module": "@jupyter-widgets/controls",
347
- "model_name": "FloatProgressModel",
348
- "model_module_version": "1.5.0",
349
- "state": {
350
- "_view_name": "ProgressView",
351
- "style": "IPY_MODEL_d8dda4b2ce864fd682e558b9a48f602e",
352
- "_dom_classes": [],
353
- "description": "100%",
354
- "_model_name": "FloatProgressModel",
355
- "bar_style": "success",
356
- "max": 6984509,
357
- "_view_module": "@jupyter-widgets/controls",
358
- "_model_module_version": "1.5.0",
359
- "value": 6984509,
360
- "_view_count": null,
361
- "_view_module_version": "1.5.0",
362
- "orientation": "horizontal",
363
- "min": 0,
364
- "description_tooltip": null,
365
- "_model_module": "@jupyter-widgets/controls",
366
- "layout": "IPY_MODEL_ff8151449e444a14869684212b9ab14e"
367
- }
368
- },
369
- "dd9498c321a9422da6faf17a0be026d4": {
370
- "model_module": "@jupyter-widgets/controls",
371
- "model_name": "HTMLModel",
372
- "model_module_version": "1.5.0",
373
- "state": {
374
- "_view_name": "HTMLView",
375
- "style": "IPY_MODEL_0f84fe609bcf4aa9afdc32a8cf076909",
376
- "_dom_classes": [],
377
- "description": "",
378
- "_model_name": "HTMLModel",
379
- "placeholder": "​",
380
- "_view_module": "@jupyter-widgets/controls",
381
- "_model_module_version": "1.5.0",
382
- "value": " 6.66M/6.66M [00:01<00:00, 6.08MB/s]",
383
- "_view_count": null,
384
- "_view_module_version": "1.5.0",
385
- "description_tooltip": null,
386
- "_model_module": "@jupyter-widgets/controls",
387
- "layout": "IPY_MODEL_8fda673769984e2b928ef820d34c85c3"
388
- }
389
- },
390
- "d8dda4b2ce864fd682e558b9a48f602e": {
391
  "model_module": "@jupyter-widgets/controls",
392
  "model_name": "ProgressStyleModel",
393
  "model_module_version": "1.5.0",
394
  "state": {
395
  "_view_name": "StyleView",
396
  "_model_name": "ProgressStyleModel",
397
- "description_width": "initial",
398
  "_view_module": "@jupyter-widgets/base",
399
  "_model_module_version": "1.5.0",
400
  "_view_count": null,
@@ -403,7 +238,7 @@
403
  "_model_module": "@jupyter-widgets/controls"
404
  }
405
  },
406
- "ff8151449e444a14869684212b9ab14e": {
407
  "model_module": "@jupyter-widgets/base",
408
  "model_name": "LayoutModel",
409
  "model_module_version": "1.2.0",
@@ -455,7 +290,7 @@
455
  "left": null
456
  }
457
  },
458
- "0f84fe609bcf4aa9afdc32a8cf076909": {
459
  "model_module": "@jupyter-widgets/controls",
460
  "model_name": "DescriptionStyleModel",
461
  "model_module_version": "1.5.0",
@@ -470,7 +305,7 @@
470
  "_model_module": "@jupyter-widgets/controls"
471
  }
472
  },
473
- "8fda673769984e2b928ef820d34c85c3": {
474
  "model_module": "@jupyter-widgets/base",
475
  "model_name": "LayoutModel",
476
  "model_module_version": "1.2.0",
@@ -567,7 +402,7 @@
567
  "colab": {
568
  "base_uri": "https://localhost:8080/"
569
  },
570
- "outputId": "ada1dd8d-e0aa-4858-e893-dc320319ca30"
571
  },
572
  "source": [
573
  "!git clone https://github.com/ultralytics/yolov5 # clone repo\n",
@@ -580,7 +415,7 @@
580
  "clear_output()\n",
581
  "print(f\"Setup complete. Using torch {torch.__version__} ({torch.cuda.get_device_properties(0).name if torch.cuda.is_available() else 'CPU'})\")"
582
  ],
583
- "execution_count": null,
584
  "outputs": [
585
  {
586
  "output_type": "stream",
@@ -619,25 +454,26 @@
619
  "colab": {
620
  "base_uri": "https://localhost:8080/"
621
  },
622
- "outputId": "a7a37616-a82b-4bdb-a463-6ead850b5615"
623
  },
624
  "source": [
 
625
  "!python detect.py --weights yolov5s.pt --img 640 --conf 0.25 --source data/images/\n",
626
- "Image(filename='runs/detect/exp/zidane.jpg', width=600)"
627
  ],
628
- "execution_count": null,
629
  "outputs": [
630
  {
631
  "output_type": "stream",
632
  "text": [
633
  "\u001b[34m\u001b[1mdetect: \u001b[0mweights=['yolov5s.pt'], source=data/images/, imgsz=640, conf_thres=0.25, iou_thres=0.45, max_det=1000, device=, view_img=False, save_txt=False, save_conf=False, save_crop=False, nosave=False, classes=None, agnostic_nms=False, augment=False, visualize=False, update=False, project=runs/detect, name=exp, exist_ok=False, line_thickness=3, hide_labels=False, hide_conf=False, half=False\n",
634
- "YOLOv5 πŸš€ v5.0-330-g18f6ba7 torch 1.9.0+cu102 CUDA:0 (Tesla V100-SXM2-16GB, 16160.5MB)\n",
635
  "\n",
636
  "Fusing layers... \n",
637
  "Model Summary: 224 layers, 7266973 parameters, 0 gradients\n",
638
- "image 1/2 /content/yolov5/data/images/bus.jpg: 640x480 4 persons, 1 bus, 1 fire hydrant, Done. (0.008s)\n",
639
- "image 2/2 /content/yolov5/data/images/zidane.jpg: 384x640 2 persons, 2 ties, Done. (0.008s)\n",
640
- "Results saved to runs/detect/exp\n",
641
  "Done. (0.091s)\n"
642
  ],
643
  "name": "stdout"
@@ -680,49 +516,45 @@
680
  "id": "WQPtK1QYVaD_",
681
  "colab": {
682
  "base_uri": "https://localhost:8080/",
683
- "height": 66,
684
  "referenced_widgets": [
685
- "2e915d9016c846e095e382b6a02ee773",
686
- "cb7fc3a5c6cc4fde8d2c83e594a7c86e",
687
- "ac3edef4e3434f4587e6cbf8aa048770",
688
- "853ac234cc2a4236946fc516871e10eb",
689
- "13842ca90c0047e584b8d68d99dad2b1",
690
- "f454999c3a924c7bad0746fb453dec36",
691
- "f94a7ca8c1f04761bf38fdc5f99664b8",
692
- "9da1a23b042c41618dd14b0e30aa7cbe"
 
 
 
693
  ]
694
  },
695
- "outputId": "3606f305-aa67-43fd-d5d6-93d1f311768c"
696
  },
697
  "source": [
698
  "# Download COCO val2017\n",
699
  "torch.hub.download_url_to_file('https://github.com/ultralytics/yolov5/releases/download/v1.0/coco2017val.zip', 'tmp.zip')\n",
700
  "!unzip -q tmp.zip -d ../datasets && rm tmp.zip"
701
  ],
702
- "execution_count": null,
703
  "outputs": [
704
  {
705
  "output_type": "display_data",
706
  "data": {
707
  "application/vnd.jupyter.widget-view+json": {
708
- "model_id": "2e915d9016c846e095e382b6a02ee773",
709
  "version_minor": 0,
710
  "version_major": 2
711
  },
712
  "text/plain": [
713
- "HBox(children=(FloatProgress(value=0.0, max=818322941.0), HTML(value='')))"
714
  ]
715
  },
716
  "metadata": {
717
  "tags": []
718
  }
719
- },
720
- {
721
- "output_type": "stream",
722
- "text": [
723
- "\n"
724
- ],
725
- "name": "stdout"
726
  }
727
  ]
728
  },
@@ -733,45 +565,45 @@
733
  "colab": {
734
  "base_uri": "https://localhost:8080/"
735
  },
736
- "outputId": "20fbc423-f536-43ff-e70b-3acf6aeade99"
737
  },
738
  "source": [
739
  "# Run YOLOv5x on COCO val2017\n",
740
  "!python val.py --weights yolov5x.pt --data coco.yaml --img 640 --iou 0.65 --half"
741
  ],
742
- "execution_count": null,
743
  "outputs": [
744
  {
745
  "output_type": "stream",
746
  "text": [
747
  "\u001b[34m\u001b[1mval: \u001b[0mdata=./data/coco.yaml, weights=['yolov5x.pt'], batch_size=32, imgsz=640, conf_thres=0.001, iou_thres=0.65, task=val, device=, single_cls=False, augment=False, verbose=False, save_txt=False, save_hybrid=False, save_conf=False, save_json=True, project=runs/val, name=exp, exist_ok=False, half=True\n",
748
- "YOLOv5 πŸš€ v5.0-330-g18f6ba7 torch 1.9.0+cu102 CUDA:0 (Tesla V100-SXM2-16GB, 16160.5MB)\n",
749
  "\n",
750
  "Downloading https://github.com/ultralytics/yolov5/releases/download/v5.0/yolov5x.pt to yolov5x.pt...\n",
751
- "100% 168M/168M [00:05<00:00, 31.9MB/s]\n",
752
  "\n",
753
  "Fusing layers... \n",
754
  "Model Summary: 476 layers, 87730285 parameters, 0 gradients\n",
755
- "\u001b[34m\u001b[1mval: \u001b[0mScanning '../datasets/coco/val2017' images and labels...4952 found, 48 missing, 0 empty, 0 corrupted: 100% 5000/5000 [00:01<00:00, 2653.03it/s]\n",
756
  "\u001b[34m\u001b[1mval: \u001b[0mNew cache created: ../datasets/coco/val2017.cache\n",
757
- " Class Images Labels P R [email protected] [email protected]:.95: 100% 157/157 [01:18<00:00, 2.00it/s]\n",
758
  " all 5000 36335 0.746 0.626 0.68 0.49\n",
759
- "Speed: 0.1ms pre-process, 5.1ms inference, 1.5ms NMS per image at shape (32, 3, 640, 640)\n",
760
  "\n",
761
  "Evaluating pycocotools mAP... saving runs/val/exp/yolov5x_predictions.json...\n",
762
  "loading annotations into memory...\n",
763
- "Done (t=0.44s)\n",
764
  "creating index...\n",
765
  "index created!\n",
766
  "Loading and preparing results...\n",
767
- "DONE (t=4.82s)\n",
768
  "creating index...\n",
769
  "index created!\n",
770
  "Running per image evaluation...\n",
771
  "Evaluate annotation type *bbox*\n",
772
- "DONE (t=84.52s).\n",
773
  "Accumulating evaluation results...\n",
774
- "DONE (t=13.82s).\n",
775
  " Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.504\n",
776
  " Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.688\n",
777
  " Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.546\n",
@@ -784,7 +616,7 @@
784
  " Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.524\n",
785
  " Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.735\n",
786
  " Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.827\n",
787
- "Results saved to runs/val/exp\n"
788
  ],
789
  "name": "stdout"
790
  }
@@ -841,54 +673,15 @@
841
  {
842
  "cell_type": "code",
843
  "metadata": {
844
- "id": "Knxi2ncxWffW",
845
- "colab": {
846
- "base_uri": "https://localhost:8080/",
847
- "height": 66,
848
- "referenced_widgets": [
849
- "6ff8a710ded44391a624dec5c460b771",
850
- "3c19729b51cd45d4848035da06e96ff8",
851
- "23b2f0ae3d46438c8de375987c77f580",
852
- "dd9498c321a9422da6faf17a0be026d4",
853
- "d8dda4b2ce864fd682e558b9a48f602e",
854
- "ff8151449e444a14869684212b9ab14e",
855
- "0f84fe609bcf4aa9afdc32a8cf076909",
856
- "8fda673769984e2b928ef820d34c85c3"
857
- ]
858
- },
859
- "outputId": "4510c6b0-8d2a-436c-d3f4-c8f8470d913a"
860
  },
861
  "source": [
862
  "# Download COCO128\n",
863
  "torch.hub.download_url_to_file('https://github.com/ultralytics/yolov5/releases/download/v1.0/coco128.zip', 'tmp.zip')\n",
864
- "!unzip -q tmp.zip -d ../ && rm tmp.zip"
865
  ],
866
  "execution_count": null,
867
- "outputs": [
868
- {
869
- "output_type": "display_data",
870
- "data": {
871
- "application/vnd.jupyter.widget-view+json": {
872
- "model_id": "6ff8a710ded44391a624dec5c460b771",
873
- "version_minor": 0,
874
- "version_major": 2
875
- },
876
- "text/plain": [
877
- "HBox(children=(FloatProgress(value=0.0, max=6984509.0), HTML(value='')))"
878
- ]
879
- },
880
- "metadata": {
881
- "tags": []
882
- }
883
- },
884
- {
885
- "output_type": "stream",
886
- "text": [
887
- "\n"
888
- ],
889
- "name": "stdout"
890
- }
891
- ]
892
  },
893
  {
894
  "cell_type": "markdown",
@@ -935,40 +728,34 @@
935
  "colab": {
936
  "base_uri": "https://localhost:8080/"
937
  },
938
- "outputId": "cd8ac17d-19a8-4e87-ab6a-31af1edac1ef"
939
  },
940
  "source": [
941
  "# Train YOLOv5s on COCO128 for 3 epochs\n",
942
  "!python train.py --img 640 --batch 16 --epochs 3 --data coco128.yaml --weights yolov5s.pt --cache"
943
  ],
944
- "execution_count": null,
945
  "outputs": [
946
  {
947
  "output_type": "stream",
948
  "text": [
949
- "\u001b[34m\u001b[1mtrain: \u001b[0mweights=yolov5s.pt, cfg=, data=coco128.yaml, hyp=data/hyps/hyp.scratch.yaml, epochs=3, batch_size=16, imgsz=640, rect=False, resume=False, nosave=False, noval=False, noautoanchor=False, evolve=None, bucket=, cache_images=True, image_weights=False, device=, multi_scale=False, single_cls=False, adam=False, sync_bn=False, workers=8, project=runs/train, entity=None, name=exp, exist_ok=False, quad=False, linear_lr=False, label_smoothing=0.0, upload_dataset=False, bbox_interval=-1, save_period=-1, artifact_alias=latest, local_rank=-1\n",
950
  "\u001b[34m\u001b[1mgithub: \u001b[0mup to date with https://github.com/ultralytics/yolov5 βœ…\n",
951
- "YOLOv5 πŸš€ v5.0-330-g18f6ba7 torch 1.9.0+cu102 CUDA:0 (Tesla V100-SXM2-16GB, 16160.5MB)\n",
952
  "\n",
953
  "\u001b[34m\u001b[1mhyperparameters: \u001b[0mlr0=0.01, lrf=0.2, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=0.05, cls=0.5, cls_pw=1.0, obj=1.0, obj_pw=1.0, iou_t=0.2, anchor_t=4.0, fl_gamma=0.0, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0, copy_paste=0.0\n",
954
  "\u001b[34m\u001b[1mWeights & Biases: \u001b[0mrun 'pip install wandb' to automatically track and visualize YOLOv5 πŸš€ runs (RECOMMENDED)\n",
955
  "\u001b[34m\u001b[1mTensorBoard: \u001b[0mStart with 'tensorboard --logdir runs/train', view at http://localhost:6006/\n",
956
- "2021-07-29 22:56:52.096481: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcudart.so.11.0\n",
957
- "\n",
958
- "WARNING: Dataset not found, nonexistent paths: ['/content/datasets/coco128/images/train2017']\n",
959
- "Downloading https://github.com/ultralytics/yolov5/releases/download/v1.0/coco128.zip ...\n",
960
- "100% 6.66M/6.66M [00:00<00:00, 44.0MB/s]\n",
961
- "Dataset autodownload success\n",
962
- "\n",
963
  "\n",
964
  " from n params module arguments \n",
965
  " 0 -1 1 3520 models.common.Focus [3, 32, 3] \n",
966
  " 1 -1 1 18560 models.common.Conv [32, 64, 3, 2] \n",
967
  " 2 -1 1 18816 models.common.C3 [64, 64, 1] \n",
968
  " 3 -1 1 73984 models.common.Conv [64, 128, 3, 2] \n",
969
- " 4 -1 1 156928 models.common.C3 [128, 128, 3] \n",
970
  " 5 -1 1 295424 models.common.Conv [128, 256, 3, 2] \n",
971
- " 6 -1 1 625152 models.common.C3 [256, 256, 3] \n",
972
  " 7 -1 1 1180672 models.common.Conv [256, 512, 3, 2] \n",
973
  " 8 -1 1 656896 models.common.SPP [512, 512, [5, 9, 13]] \n",
974
  " 9 -1 1 1182720 models.common.C3 [512, 512, 1, False] \n",
@@ -993,11 +780,11 @@
993
  "Scaled weight_decay = 0.0005\n",
994
  "\u001b[34m\u001b[1moptimizer:\u001b[0m SGD with parameter groups 59 weight, 62 weight (no decay), 62 bias\n",
995
  "\u001b[34m\u001b[1malbumentations: \u001b[0mversion 1.0.3 required by YOLOv5, but version 0.1.12 is currently installed\n",
996
- "\u001b[34m\u001b[1mtrain: \u001b[0mScanning '../datasets/coco128/labels/train2017' images and labels...128 found, 0 missing, 2 empty, 0 corrupted: 100% 128/128 [00:00<00:00, 2021.98it/s]\n",
997
  "\u001b[34m\u001b[1mtrain: \u001b[0mNew cache created: ../datasets/coco128/labels/train2017.cache\n",
998
- "\u001b[34m\u001b[1mtrain: \u001b[0mCaching images (0.1GB): 100% 128/128 [00:00<00:00, 273.58it/s]\n",
999
- "\u001b[34m\u001b[1mval: \u001b[0mScanning '../datasets/coco128/labels/train2017.cache' images and labels... 128 found, 0 missing, 2 empty, 0 corrupted: 100% 128/128 [00:00<00:00, 506004.63it/s]\n",
1000
- "\u001b[34m\u001b[1mval: \u001b[0mCaching images (0.1GB): 100% 128/128 [00:01<00:00, 121.71it/s]\n",
1001
  "[W pthreadpool-cpp.cc:90] Warning: Leaking Caffe2 thread-pool after fork. (function pthreadpool)\n",
1002
  "[W pthreadpool-cpp.cc:90] Warning: Leaking Caffe2 thread-pool after fork. (function pthreadpool)\n",
1003
  "Plotting labels... \n",
@@ -1009,23 +796,24 @@
1009
  "Starting training for 3 epochs...\n",
1010
  "\n",
1011
  " Epoch gpu_mem box obj cls labels img_size\n",
1012
- " 0/2 3.64G 0.0441 0.06646 0.02229 290 640: 100% 8/8 [00:04<00:00, 1.93it/s]\n",
1013
- " Class Images Labels P R [email protected] [email protected]:.95: 100% 4/4 [00:01<00:00, 3.45it/s]\n",
1014
- " all 128 929 0.696 0.562 0.644 0.419\n",
1015
  "\n",
1016
  " Epoch gpu_mem box obj cls labels img_size\n",
1017
- " 1/2 5.04G 0.04573 0.06289 0.021 226 640: 100% 8/8 [00:01<00:00, 5.46it/s]\n",
1018
- " Class Images Labels P R [email protected] [email protected]:.95: 100% 4/4 [00:01<00:00, 3.16it/s]\n",
1019
- " all 128 929 0.71 0.567 0.654 0.424\n",
1020
  "\n",
1021
  " Epoch gpu_mem box obj cls labels img_size\n",
1022
- " 2/2 5.04G 0.04542 0.0715 0.02028 242 640: 100% 8/8 [00:01<00:00, 5.12it/s]\n",
1023
- " Class Images Labels P R [email protected] [email protected]:.95: 100% 4/4 [00:02<00:00, 1.46it/s]\n",
1024
- " all 128 929 0.731 0.563 0.658 0.427\n",
1025
- "3 epochs completed in 0.006 hours.\n",
1026
  "\n",
 
1027
  "Optimizer stripped from runs/train/exp/weights/last.pt, 14.8MB\n",
1028
- "Optimizer stripped from runs/train/exp/weights/best.pt, 14.8MB\n"
 
1029
  ],
1030
  "name": "stdout"
1031
  }
 
6
  "name": "YOLOv5 Tutorial",
7
  "provenance": [],
8
  "collapsed_sections": [],
 
9
  "include_colab_link": true
10
  },
11
  "kernelspec": {
 
15
  "accelerator": "GPU",
16
  "widgets": {
17
  "application/vnd.jupyter.widget-state+json": {
18
+ "484511f272e64eab8b42e68dac5f7a66": {
19
  "model_module": "@jupyter-widgets/controls",
20
  "model_name": "HBoxModel",
21
  "model_module_version": "1.5.0",
 
28
  "_view_count": null,
29
  "_view_module_version": "1.5.0",
30
  "box_style": "",
31
+ "layout": "IPY_MODEL_78cceec059784f2bb36988d3336e4d56",
32
  "_model_module": "@jupyter-widgets/controls",
33
  "children": [
34
+ "IPY_MODEL_ab93d8b65c134605934ff9ec5efb1bb6",
35
+ "IPY_MODEL_30df865ded4c434191bce772c9a82f3a",
36
+ "IPY_MODEL_20cdc61eb3404f42a12b37901b0d85fb"
37
  ]
38
  }
39
  },
40
+ "78cceec059784f2bb36988d3336e4d56": {
41
  "model_module": "@jupyter-widgets/base",
42
  "model_name": "LayoutModel",
43
  "model_module_version": "1.2.0",
 
89
  "left": null
90
  }
91
  },
92
+ "ab93d8b65c134605934ff9ec5efb1bb6": {
93
+ "model_module": "@jupyter-widgets/controls",
94
+ "model_name": "HTMLModel",
95
+ "model_module_version": "1.5.0",
96
+ "state": {
97
+ "_view_name": "HTMLView",
98
+ "style": "IPY_MODEL_2d7239993a9645b09b221405ac682743",
99
+ "_dom_classes": [],
100
+ "description": "",
101
+ "_model_name": "HTMLModel",
102
+ "placeholder": "​",
103
+ "_view_module": "@jupyter-widgets/controls",
104
+ "_model_module_version": "1.5.0",
105
+ "value": "100%",
106
+ "_view_count": null,
107
+ "_view_module_version": "1.5.0",
108
+ "description_tooltip": null,
109
+ "_model_module": "@jupyter-widgets/controls",
110
+ "layout": "IPY_MODEL_17b5a87f92104ec7ab96bf507637d0d2"
111
+ }
112
+ },
113
+ "30df865ded4c434191bce772c9a82f3a": {
114
  "model_module": "@jupyter-widgets/controls",
115
  "model_name": "FloatProgressModel",
116
  "model_module_version": "1.5.0",
117
  "state": {
118
  "_view_name": "ProgressView",
119
+ "style": "IPY_MODEL_2358bfb2270247359e94b066b3cc3d1f",
120
  "_dom_classes": [],
121
+ "description": "",
122
  "_model_name": "FloatProgressModel",
123
  "bar_style": "success",
124
  "max": 818322941,
 
131
  "min": 0,
132
  "description_tooltip": null,
133
  "_model_module": "@jupyter-widgets/controls",
134
+ "layout": "IPY_MODEL_3e984405db654b0b83b88b2db08baffd"
135
  }
136
  },
137
+ "20cdc61eb3404f42a12b37901b0d85fb": {
138
  "model_module": "@jupyter-widgets/controls",
139
  "model_name": "HTMLModel",
140
  "model_module_version": "1.5.0",
141
  "state": {
142
  "_view_name": "HTMLView",
143
+ "style": "IPY_MODEL_654d8a19b9f949c6bbdaf8b0875c931e",
144
  "_dom_classes": [],
145
  "description": "",
146
  "_model_name": "HTMLModel",
147
  "placeholder": "​",
148
  "_view_module": "@jupyter-widgets/controls",
149
  "_model_module_version": "1.5.0",
150
+ "value": " 780M/780M [00:33&lt;00:00, 24.4MB/s]",
151
  "_view_count": null,
152
  "_view_module_version": "1.5.0",
153
  "description_tooltip": null,
154
  "_model_module": "@jupyter-widgets/controls",
155
+ "layout": "IPY_MODEL_896030c5d13b415aaa05032818d81a6e"
156
  }
157
  },
158
+ "2d7239993a9645b09b221405ac682743": {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
159
  "model_module": "@jupyter-widgets/controls",
160
  "model_name": "DescriptionStyleModel",
161
  "model_module_version": "1.5.0",
 
170
  "_model_module": "@jupyter-widgets/controls"
171
  }
172
  },
173
+ "17b5a87f92104ec7ab96bf507637d0d2": {
174
  "model_module": "@jupyter-widgets/base",
175
  "model_name": "LayoutModel",
176
  "model_module_version": "1.2.0",
 
222
  "left": null
223
  }
224
  },
225
+ "2358bfb2270247359e94b066b3cc3d1f": {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
226
  "model_module": "@jupyter-widgets/controls",
227
  "model_name": "ProgressStyleModel",
228
  "model_module_version": "1.5.0",
229
  "state": {
230
  "_view_name": "StyleView",
231
  "_model_name": "ProgressStyleModel",
232
+ "description_width": "",
233
  "_view_module": "@jupyter-widgets/base",
234
  "_model_module_version": "1.5.0",
235
  "_view_count": null,
 
238
  "_model_module": "@jupyter-widgets/controls"
239
  }
240
  },
241
+ "3e984405db654b0b83b88b2db08baffd": {
242
  "model_module": "@jupyter-widgets/base",
243
  "model_name": "LayoutModel",
244
  "model_module_version": "1.2.0",
 
290
  "left": null
291
  }
292
  },
293
+ "654d8a19b9f949c6bbdaf8b0875c931e": {
294
  "model_module": "@jupyter-widgets/controls",
295
  "model_name": "DescriptionStyleModel",
296
  "model_module_version": "1.5.0",
 
305
  "_model_module": "@jupyter-widgets/controls"
306
  }
307
  },
308
+ "896030c5d13b415aaa05032818d81a6e": {
309
  "model_module": "@jupyter-widgets/base",
310
  "model_name": "LayoutModel",
311
  "model_module_version": "1.2.0",
 
402
  "colab": {
403
  "base_uri": "https://localhost:8080/"
404
  },
405
+ "outputId": "4d67116a-43e9-4d84-d19e-1edd83f23a04"
406
  },
407
  "source": [
408
  "!git clone https://github.com/ultralytics/yolov5 # clone repo\n",
 
415
  "clear_output()\n",
416
  "print(f\"Setup complete. Using torch {torch.__version__} ({torch.cuda.get_device_properties(0).name if torch.cuda.is_available() else 'CPU'})\")"
417
  ],
418
+ "execution_count": 1,
419
  "outputs": [
420
  {
421
  "output_type": "stream",
 
454
  "colab": {
455
  "base_uri": "https://localhost:8080/"
456
  },
457
+ "outputId": "8b728908-81ab-4861-edb0-4d0c46c439fb"
458
  },
459
  "source": [
460
+ "%rm -rf runs\n",
461
  "!python detect.py --weights yolov5s.pt --img 640 --conf 0.25 --source data/images/\n",
462
+ "#Image(filename='runs/detect/exp/zidane.jpg', width=600)"
463
  ],
464
+ "execution_count": 4,
465
  "outputs": [
466
  {
467
  "output_type": "stream",
468
  "text": [
469
  "\u001b[34m\u001b[1mdetect: \u001b[0mweights=['yolov5s.pt'], source=data/images/, imgsz=640, conf_thres=0.25, iou_thres=0.45, max_det=1000, device=, view_img=False, save_txt=False, save_conf=False, save_crop=False, nosave=False, classes=None, agnostic_nms=False, augment=False, visualize=False, update=False, project=runs/detect, name=exp, exist_ok=False, line_thickness=3, hide_labels=False, hide_conf=False, half=False\n",
470
+ "YOLOv5 πŸš€ v5.0-367-g01cdb76 torch 1.9.0+cu102 CUDA:0 (Tesla V100-SXM2-16GB, 16160.5MB)\n",
471
  "\n",
472
  "Fusing layers... \n",
473
  "Model Summary: 224 layers, 7266973 parameters, 0 gradients\n",
474
+ "image 1/2 /content/yolov5/data/images/bus.jpg: 640x480 4 persons, 1 bus, 1 fire hydrant, Done. (0.007s)\n",
475
+ "image 2/2 /content/yolov5/data/images/zidane.jpg: 384x640 2 persons, 2 ties, Done. (0.007s)\n",
476
+ "Results saved to \u001b[1mruns/detect/exp\u001b[0m\n",
477
  "Done. (0.091s)\n"
478
  ],
479
  "name": "stdout"
 
516
  "id": "WQPtK1QYVaD_",
517
  "colab": {
518
  "base_uri": "https://localhost:8080/",
519
+ "height": 48,
520
  "referenced_widgets": [
521
+ "484511f272e64eab8b42e68dac5f7a66",
522
+ "78cceec059784f2bb36988d3336e4d56",
523
+ "ab93d8b65c134605934ff9ec5efb1bb6",
524
+ "30df865ded4c434191bce772c9a82f3a",
525
+ "20cdc61eb3404f42a12b37901b0d85fb",
526
+ "2d7239993a9645b09b221405ac682743",
527
+ "17b5a87f92104ec7ab96bf507637d0d2",
528
+ "2358bfb2270247359e94b066b3cc3d1f",
529
+ "3e984405db654b0b83b88b2db08baffd",
530
+ "654d8a19b9f949c6bbdaf8b0875c931e",
531
+ "896030c5d13b415aaa05032818d81a6e"
532
  ]
533
  },
534
+ "outputId": "7e6f5c96-c819-43e1-cd03-d3b9878cf8de"
535
  },
536
  "source": [
537
  "# Download COCO val2017\n",
538
  "torch.hub.download_url_to_file('https://github.com/ultralytics/yolov5/releases/download/v1.0/coco2017val.zip', 'tmp.zip')\n",
539
  "!unzip -q tmp.zip -d ../datasets && rm tmp.zip"
540
  ],
541
+ "execution_count": 5,
542
  "outputs": [
543
  {
544
  "output_type": "display_data",
545
  "data": {
546
  "application/vnd.jupyter.widget-view+json": {
547
+ "model_id": "484511f272e64eab8b42e68dac5f7a66",
548
  "version_minor": 0,
549
  "version_major": 2
550
  },
551
  "text/plain": [
552
+ " 0%| | 0.00/780M [00:00<?, ?B/s]"
553
  ]
554
  },
555
  "metadata": {
556
  "tags": []
557
  }
 
 
 
 
 
 
 
558
  }
559
  ]
560
  },
 
565
  "colab": {
566
  "base_uri": "https://localhost:8080/"
567
  },
568
+ "outputId": "3dd0e2fc-aecf-4108-91b1-6392da1863cb"
569
  },
570
  "source": [
571
  "# Run YOLOv5x on COCO val2017\n",
572
  "!python val.py --weights yolov5x.pt --data coco.yaml --img 640 --iou 0.65 --half"
573
  ],
574
+ "execution_count": 6,
575
  "outputs": [
576
  {
577
  "output_type": "stream",
578
  "text": [
579
  "\u001b[34m\u001b[1mval: \u001b[0mdata=./data/coco.yaml, weights=['yolov5x.pt'], batch_size=32, imgsz=640, conf_thres=0.001, iou_thres=0.65, task=val, device=, single_cls=False, augment=False, verbose=False, save_txt=False, save_hybrid=False, save_conf=False, save_json=True, project=runs/val, name=exp, exist_ok=False, half=True\n",
580
+ "YOLOv5 πŸš€ v5.0-367-g01cdb76 torch 1.9.0+cu102 CUDA:0 (Tesla V100-SXM2-16GB, 16160.5MB)\n",
581
  "\n",
582
  "Downloading https://github.com/ultralytics/yolov5/releases/download/v5.0/yolov5x.pt to yolov5x.pt...\n",
583
+ "100% 168M/168M [00:08<00:00, 20.6MB/s]\n",
584
  "\n",
585
  "Fusing layers... \n",
586
  "Model Summary: 476 layers, 87730285 parameters, 0 gradients\n",
587
+ "\u001b[34m\u001b[1mval: \u001b[0mScanning '../datasets/coco/val2017' images and labels...4952 found, 48 missing, 0 empty, 0 corrupted: 100% 5000/5000 [00:01<00:00, 2749.96it/s]\n",
588
  "\u001b[34m\u001b[1mval: \u001b[0mNew cache created: ../datasets/coco/val2017.cache\n",
589
+ " Class Images Labels P R [email protected] [email protected]:.95: 100% 157/157 [01:08<00:00, 2.28it/s]\n",
590
  " all 5000 36335 0.746 0.626 0.68 0.49\n",
591
+ "Speed: 0.1ms pre-process, 5.1ms inference, 1.6ms NMS per image at shape (32, 3, 640, 640)\n",
592
  "\n",
593
  "Evaluating pycocotools mAP... saving runs/val/exp/yolov5x_predictions.json...\n",
594
  "loading annotations into memory...\n",
595
+ "Done (t=0.46s)\n",
596
  "creating index...\n",
597
  "index created!\n",
598
  "Loading and preparing results...\n",
599
+ "DONE (t=4.94s)\n",
600
  "creating index...\n",
601
  "index created!\n",
602
  "Running per image evaluation...\n",
603
  "Evaluate annotation type *bbox*\n",
604
+ "DONE (t=83.60s).\n",
605
  "Accumulating evaluation results...\n",
606
+ "DONE (t=13.22s).\n",
607
  " Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.504\n",
608
  " Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.688\n",
609
  " Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.546\n",
 
616
  " Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.524\n",
617
  " Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.735\n",
618
  " Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.827\n",
619
+ "Results saved to \u001b[1mruns/val/exp\u001b[0m\n"
620
  ],
621
  "name": "stdout"
622
  }
 
673
  {
674
  "cell_type": "code",
675
  "metadata": {
676
+ "id": "Knxi2ncxWffW"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
677
  },
678
  "source": [
679
  "# Download COCO128\n",
680
  "torch.hub.download_url_to_file('https://github.com/ultralytics/yolov5/releases/download/v1.0/coco128.zip', 'tmp.zip')\n",
681
+ "!unzip -q tmp.zip -d ../datasets && rm tmp.zip"
682
  ],
683
  "execution_count": null,
684
+ "outputs": []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
685
  },
686
  {
687
  "cell_type": "markdown",
 
728
  "colab": {
729
  "base_uri": "https://localhost:8080/"
730
  },
731
+ "outputId": "00ea4b14-a75c-44a2-a913-03b431b69de5"
732
  },
733
  "source": [
734
  "# Train YOLOv5s on COCO128 for 3 epochs\n",
735
  "!python train.py --img 640 --batch 16 --epochs 3 --data coco128.yaml --weights yolov5s.pt --cache"
736
  ],
737
+ "execution_count": 8,
738
  "outputs": [
739
  {
740
  "output_type": "stream",
741
  "text": [
742
+ "\u001b[34m\u001b[1mtrain: \u001b[0mweights=yolov5s.pt, cfg=, data=coco128.yaml, hyp=data/hyps/hyp.scratch.yaml, epochs=3, batch_size=16, imgsz=640, rect=False, resume=False, nosave=False, noval=False, noautoanchor=False, evolve=None, bucket=, cache=ram, image_weights=False, device=, multi_scale=False, single_cls=False, adam=False, sync_bn=False, workers=8, project=runs/train, entity=None, name=exp, exist_ok=False, quad=False, linear_lr=False, label_smoothing=0.0, upload_dataset=False, bbox_interval=-1, save_period=-1, artifact_alias=latest, local_rank=-1, freeze=0\n",
743
  "\u001b[34m\u001b[1mgithub: \u001b[0mup to date with https://github.com/ultralytics/yolov5 βœ…\n",
744
+ "YOLOv5 πŸš€ v5.0-367-g01cdb76 torch 1.9.0+cu102 CUDA:0 (Tesla V100-SXM2-16GB, 16160.5MB)\n",
745
  "\n",
746
  "\u001b[34m\u001b[1mhyperparameters: \u001b[0mlr0=0.01, lrf=0.2, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=0.05, cls=0.5, cls_pw=1.0, obj=1.0, obj_pw=1.0, iou_t=0.2, anchor_t=4.0, fl_gamma=0.0, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0, copy_paste=0.0\n",
747
  "\u001b[34m\u001b[1mWeights & Biases: \u001b[0mrun 'pip install wandb' to automatically track and visualize YOLOv5 πŸš€ runs (RECOMMENDED)\n",
748
  "\u001b[34m\u001b[1mTensorBoard: \u001b[0mStart with 'tensorboard --logdir runs/train', view at http://localhost:6006/\n",
749
+ "2021-08-15 14:40:43.449642: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcudart.so.11.0\n",
 
 
 
 
 
 
750
  "\n",
751
  " from n params module arguments \n",
752
  " 0 -1 1 3520 models.common.Focus [3, 32, 3] \n",
753
  " 1 -1 1 18560 models.common.Conv [32, 64, 3, 2] \n",
754
  " 2 -1 1 18816 models.common.C3 [64, 64, 1] \n",
755
  " 3 -1 1 73984 models.common.Conv [64, 128, 3, 2] \n",
756
+ " 4 -1 3 156928 models.common.C3 [128, 128, 3] \n",
757
  " 5 -1 1 295424 models.common.Conv [128, 256, 3, 2] \n",
758
+ " 6 -1 3 625152 models.common.C3 [256, 256, 3] \n",
759
  " 7 -1 1 1180672 models.common.Conv [256, 512, 3, 2] \n",
760
  " 8 -1 1 656896 models.common.SPP [512, 512, [5, 9, 13]] \n",
761
  " 9 -1 1 1182720 models.common.C3 [512, 512, 1, False] \n",
 
780
  "Scaled weight_decay = 0.0005\n",
781
  "\u001b[34m\u001b[1moptimizer:\u001b[0m SGD with parameter groups 59 weight, 62 weight (no decay), 62 bias\n",
782
  "\u001b[34m\u001b[1malbumentations: \u001b[0mversion 1.0.3 required by YOLOv5, but version 0.1.12 is currently installed\n",
783
+ "\u001b[34m\u001b[1mtrain: \u001b[0mScanning '../datasets/coco128/labels/train2017' images and labels...128 found, 0 missing, 2 empty, 0 corrupted: 100% 128/128 [00:00<00:00, 2440.28it/s]\n",
784
  "\u001b[34m\u001b[1mtrain: \u001b[0mNew cache created: ../datasets/coco128/labels/train2017.cache\n",
785
+ "\u001b[34m\u001b[1mtrain: \u001b[0mCaching images (0.1GB ram): 100% 128/128 [00:00<00:00, 302.61it/s]\n",
786
+ "\u001b[34m\u001b[1mval: \u001b[0mScanning '../datasets/coco128/labels/train2017.cache' images and labels... 128 found, 0 missing, 2 empty, 0 corrupted: 100% 128/128 [00:00<?, ?it/s]\n",
787
+ "\u001b[34m\u001b[1mval: \u001b[0mCaching images (0.1GB ram): 100% 128/128 [00:00<00:00, 142.55it/s]\n",
788
  "[W pthreadpool-cpp.cc:90] Warning: Leaking Caffe2 thread-pool after fork. (function pthreadpool)\n",
789
  "[W pthreadpool-cpp.cc:90] Warning: Leaking Caffe2 thread-pool after fork. (function pthreadpool)\n",
790
  "Plotting labels... \n",
 
796
  "Starting training for 3 epochs...\n",
797
  "\n",
798
  " Epoch gpu_mem box obj cls labels img_size\n",
799
+ " 0/2 3.64G 0.04492 0.0674 0.02213 298 640: 100% 8/8 [00:03<00:00, 2.05it/s]\n",
800
+ " Class Images Labels P R [email protected] [email protected]:.95: 100% 4/4 [00:00<00:00, 4.70it/s]\n",
801
+ " all 128 929 0.686 0.565 0.642 0.421\n",
802
  "\n",
803
  " Epoch gpu_mem box obj cls labels img_size\n",
804
+ " 1/2 5.04G 0.04403 0.0611 0.01986 232 640: 100% 8/8 [00:01<00:00, 5.59it/s]\n",
805
+ " Class Images Labels P R [email protected] [email protected]:.95: 100% 4/4 [00:00<00:00, 4.46it/s]\n",
806
+ " all 128 929 0.694 0.563 0.654 0.425\n",
807
  "\n",
808
  " Epoch gpu_mem box obj cls labels img_size\n",
809
+ " 2/2 5.04G 0.04616 0.07056 0.02071 214 640: 100% 8/8 [00:01<00:00, 5.94it/s]\n",
810
+ " Class Images Labels P R [email protected] [email protected]:.95: 100% 4/4 [00:02<00:00, 1.52it/s]\n",
811
+ " all 128 929 0.711 0.562 0.66 0.431\n",
 
812
  "\n",
813
+ "3 epochs completed in 0.005 hours.\n",
814
  "Optimizer stripped from runs/train/exp/weights/last.pt, 14.8MB\n",
815
+ "Optimizer stripped from runs/train/exp/weights/best.pt, 14.8MB\n",
816
+ "Results saved to \u001b[1mruns/train/exp\u001b[0m\n"
817
  ],
818
  "name": "stdout"
819
  }