glenn-jocher commited on
Commit
5d66e48
β€’
1 Parent(s): 3fef117

Train from `--data path/to/dataset.zip` feature (#4185)

Browse files

* Train from `--data path/to/dataset.zip` feature

* Update dataset_stats()

* cleanup

* cleanup2

data/{Argoverse_HD.yaml β†’ Argoverse.yaml} RENAMED
@@ -1,6 +1,6 @@
1
  # YOLOv5 πŸš€ by Ultralytics https://ultralytics.com, licensed under GNU GPL v3.0
2
  # Argoverse-HD dataset (ring-front-center camera) http://www.cs.cmu.edu/~mengtial/proj/streaming/
3
- # Example usage: python train.py --data Argoverse_HD.yaml
4
  # parent
5
  # β”œβ”€β”€ yolov5
6
  # └── datasets
 
1
  # YOLOv5 πŸš€ by Ultralytics https://ultralytics.com, licensed under GNU GPL v3.0
2
  # Argoverse-HD dataset (ring-front-center camera) http://www.cs.cmu.edu/~mengtial/proj/streaming/
3
+ # Example usage: python train.py --data Argoverse.yaml
4
  # parent
5
  # β”œβ”€β”€ yolov5
6
  # └── datasets
hubconf.py CHANGED
@@ -27,7 +27,7 @@ def _create(name, pretrained=True, channels=3, classes=80, autoshape=True, verbo
27
 
28
  from models.yolo import Model, attempt_load
29
  from utils.general import check_requirements, set_logging
30
- from utils.google_utils import attempt_download
31
  from utils.torch_utils import select_device
32
 
33
  file = Path(__file__).absolute()
 
27
 
28
  from models.yolo import Model, attempt_load
29
  from utils.general import check_requirements, set_logging
30
+ from utils.downloads import attempt_download
31
  from utils.torch_utils import select_device
32
 
33
  file = Path(__file__).absolute()
models/experimental.py CHANGED
@@ -5,7 +5,7 @@ import torch
5
  import torch.nn as nn
6
 
7
  from models.common import Conv, DWConv
8
- from utils.google_utils import attempt_download
9
 
10
 
11
  class CrossConv(nn.Module):
 
5
  import torch.nn as nn
6
 
7
  from models.common import Conv, DWConv
8
+ from utils.downloads import attempt_download
9
 
10
 
11
  class CrossConv(nn.Module):
train.py CHANGED
@@ -35,7 +35,7 @@ from utils.datasets import create_dataloader
35
  from utils.general import labels_to_class_weights, increment_path, labels_to_image_weights, init_seeds, \
36
  strip_optimizer, get_latest_run, check_dataset, check_file, check_git_status, check_img_size, \
37
  check_requirements, print_mutation, set_logging, one_cycle, colorstr
38
- from utils.google_utils import attempt_download
39
  from utils.loss import ComputeLoss
40
  from utils.plots import plot_labels, plot_evolution
41
  from utils.torch_utils import ModelEMA, select_device, intersect_dicts, torch_distributed_zero_first, de_parallel
@@ -78,9 +78,9 @@ def train(hyp, # path/to/hyp.yaml or hyp dictionary
78
  plots = not evolve # create plots
79
  cuda = device.type != 'cpu'
80
  init_seeds(1 + RANK)
81
- with open(data, encoding='ascii', errors='ignore') as f:
82
- data_dict = yaml.safe_load(f)
83
-
84
  nc = 1 if single_cls else int(data_dict['nc']) # number of classes
85
  names = ['item'] if single_cls and len(data_dict['names']) != 1 else data_dict['names'] # class names
86
  assert len(names) == nc, f'{len(names)} names found for nc={nc} dataset in {data}' # check
@@ -106,9 +106,6 @@ def train(hyp, # path/to/hyp.yaml or hyp dictionary
106
  LOGGER.info(f'Transferred {len(csd)}/{len(model.state_dict())} items from {weights}') # report
107
  else:
108
  model = Model(cfg, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create
109
- with torch_distributed_zero_first(RANK):
110
- check_dataset(data_dict) # check
111
- train_path, val_path = data_dict['train'], data_dict['val']
112
 
113
  # Freeze
114
  freeze = [] # parameter names to freeze (full or partial)
 
35
  from utils.general import labels_to_class_weights, increment_path, labels_to_image_weights, init_seeds, \
36
  strip_optimizer, get_latest_run, check_dataset, check_file, check_git_status, check_img_size, \
37
  check_requirements, print_mutation, set_logging, one_cycle, colorstr
38
+ from utils.downloads import attempt_download
39
  from utils.loss import ComputeLoss
40
  from utils.plots import plot_labels, plot_evolution
41
  from utils.torch_utils import ModelEMA, select_device, intersect_dicts, torch_distributed_zero_first, de_parallel
 
78
  plots = not evolve # create plots
79
  cuda = device.type != 'cpu'
80
  init_seeds(1 + RANK)
81
+ with torch_distributed_zero_first(RANK):
82
+ data_dict = check_dataset(data) # check
83
+ train_path, val_path = data_dict['train'], data_dict['val']
84
  nc = 1 if single_cls else int(data_dict['nc']) # number of classes
85
  names = ['item'] if single_cls and len(data_dict['names']) != 1 else data_dict['names'] # class names
86
  assert len(names) == nc, f'{len(names)} names found for nc={nc} dataset in {data}' # check
 
106
  LOGGER.info(f'Transferred {len(csd)}/{len(model.state_dict())} items from {weights}') # report
107
  else:
108
  model = Model(cfg, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create
 
 
 
109
 
110
  # Freeze
111
  freeze = [] # parameter names to freeze (full or partial)
utils/datasets.py CHANGED
@@ -884,11 +884,11 @@ def verify_image_label(args):
884
  return [None, None, None, None, nm, nf, ne, nc, msg]
885
 
886
 
887
- def dataset_stats(path='coco128.yaml', autodownload=False, verbose=False):
888
  """ Return dataset statistics dictionary with images and instances counts per split per class
889
- Usage1: from utils.datasets import *; dataset_stats('coco128.yaml', verbose=True)
890
- Usage2: from utils.datasets import *; dataset_stats('../datasets/coco128.zip', verbose=True)
891
-
892
  Arguments
893
  path: Path to data.yaml or data.zip (with data.yaml inside data.zip)
894
  autodownload: Attempt to download dataset if not found locally
@@ -897,35 +897,42 @@ def dataset_stats(path='coco128.yaml', autodownload=False, verbose=False):
897
 
898
  def round_labels(labels):
899
  # Update labels to integer class and 6 decimal place floats
900
- return [[int(c), *[round(x, 6) for x in points]] for c, *points in labels]
901
 
902
  def unzip(path):
903
  # Unzip data.zip TODO: CONSTRAINT: path/to/abc.zip MUST unzip to 'path/to/abc/'
904
  if str(path).endswith('.zip'): # path is data.zip
 
905
  assert os.system(f'unzip -q {path} -d {path.parent}') == 0, f'Error unzipping {path}'
906
- data_dir = path.with_suffix('') # dataset directory
907
- return True, data_dir, list(data_dir.rglob('*.yaml'))[0] # zipped, data_dir, yaml_path
908
  else: # path is data.yaml
909
  return False, None, path
910
 
 
 
 
 
 
 
 
 
911
  zipped, data_dir, yaml_path = unzip(Path(path))
912
  with open(check_file(yaml_path), encoding='ascii', errors='ignore') as f:
913
  data = yaml.safe_load(f) # data dict
914
  if zipped:
915
  data['path'] = data_dir # TODO: should this be dir.resolve()?
916
  check_dataset(data, autodownload) # download dataset if missing
917
- nc = data['nc'] # number of classes
918
- stats = {'nc': nc, 'names': data['names']} # statistics dictionary
919
  for split in 'train', 'val', 'test':
920
  if data.get(split) is None:
921
  stats[split] = None # i.e. no test set
922
  continue
923
  x = []
924
- dataset = LoadImagesAndLabels(data[split], augment=False, rect=True) # load dataset
925
- if split == 'train':
926
- cache_path = Path(dataset.label_files[0]).parent.with_suffix('.cache') # *.cache path
927
  for label in tqdm(dataset.labels, total=dataset.n, desc='Statistics'):
928
- x.append(np.bincount(label[:, 0].astype(int), minlength=nc))
929
  x = np.array(x) # shape(128x80)
930
  stats[split] = {'instance_stats': {'total': int(x.sum()), 'per_class': x.sum(0).tolist()},
931
  'image_stats': {'total': dataset.n, 'unlabelled': int(np.all(x == 0, 1).sum()),
@@ -933,10 +940,37 @@ def dataset_stats(path='coco128.yaml', autodownload=False, verbose=False):
933
  'labels': [{str(Path(k).name): round_labels(v.tolist())} for k, v in
934
  zip(dataset.img_files, dataset.labels)]}
935
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
936
  # Save, print and return
937
- with open(cache_path.with_suffix('.json'), 'w') as f:
938
- json.dump(stats, f) # save stats *.json
 
 
939
  if verbose:
940
  print(json.dumps(stats, indent=2, sort_keys=False))
941
- # print(yaml.dump([stats], sort_keys=False, default_flow_style=False))
942
  return stats
 
884
  return [None, None, None, None, nm, nf, ne, nc, msg]
885
 
886
 
887
+ def dataset_stats(path='coco128.yaml', autodownload=False, verbose=False, profile=False, hub=False):
888
  """ Return dataset statistics dictionary with images and instances counts per split per class
889
+ To run in parent directory: export PYTHONPATH="$PWD/yolov5"
890
+ Usage1: from utils.datasets import *; dataset_stats('coco128.yaml', autodownload=True)
891
+ Usage2: from utils.datasets import *; dataset_stats('../datasets/coco128_with_yaml.zip')
892
  Arguments
893
  path: Path to data.yaml or data.zip (with data.yaml inside data.zip)
894
  autodownload: Attempt to download dataset if not found locally
 
897
 
898
  def round_labels(labels):
899
  # Update labels to integer class and 6 decimal place floats
900
+ return [[int(c), *[round(x, 4) for x in points]] for c, *points in labels]
901
 
902
  def unzip(path):
903
  # Unzip data.zip TODO: CONSTRAINT: path/to/abc.zip MUST unzip to 'path/to/abc/'
904
  if str(path).endswith('.zip'): # path is data.zip
905
+ assert Path(path).is_file(), f'Error unzipping {path}, file not found'
906
  assert os.system(f'unzip -q {path} -d {path.parent}') == 0, f'Error unzipping {path}'
907
+ dir = path.with_suffix('') # dataset directory
908
+ return True, str(dir), next(dir.rglob('*.yaml')) # zipped, data_dir, yaml_path
909
  else: # path is data.yaml
910
  return False, None, path
911
 
912
+ def hub_ops(f, max_dim=1920):
913
+ # HUB ops for 1 image 'f'
914
+ im = Image.open(f)
915
+ r = max_dim / max(im.height, im.width) # ratio
916
+ if r < 1.0: # image too large
917
+ im = im.resize((int(im.width * r), int(im.height * r)))
918
+ im.save(im_dir / Path(f).name, quality=75) # save
919
+
920
  zipped, data_dir, yaml_path = unzip(Path(path))
921
  with open(check_file(yaml_path), encoding='ascii', errors='ignore') as f:
922
  data = yaml.safe_load(f) # data dict
923
  if zipped:
924
  data['path'] = data_dir # TODO: should this be dir.resolve()?
925
  check_dataset(data, autodownload) # download dataset if missing
926
+ hub_dir = Path(data['path'] + ('-hub' if hub else ''))
927
+ stats = {'nc': data['nc'], 'names': data['names']} # statistics dictionary
928
  for split in 'train', 'val', 'test':
929
  if data.get(split) is None:
930
  stats[split] = None # i.e. no test set
931
  continue
932
  x = []
933
+ dataset = LoadImagesAndLabels(data[split]) # load dataset
 
 
934
  for label in tqdm(dataset.labels, total=dataset.n, desc='Statistics'):
935
+ x.append(np.bincount(label[:, 0].astype(int), minlength=data['nc']))
936
  x = np.array(x) # shape(128x80)
937
  stats[split] = {'instance_stats': {'total': int(x.sum()), 'per_class': x.sum(0).tolist()},
938
  'image_stats': {'total': dataset.n, 'unlabelled': int(np.all(x == 0, 1).sum()),
 
940
  'labels': [{str(Path(k).name): round_labels(v.tolist())} for k, v in
941
  zip(dataset.img_files, dataset.labels)]}
942
 
943
+ if hub:
944
+ im_dir = hub_dir / 'images'
945
+ im_dir.mkdir(parents=True, exist_ok=True)
946
+ for _ in tqdm(ThreadPool(NUM_THREADS).imap(hub_ops, dataset.img_files), total=dataset.n, desc='HUB Ops'):
947
+ pass
948
+
949
+ # Profile
950
+ stats_path = hub_dir / 'stats.json'
951
+ if profile:
952
+ for _ in range(1):
953
+ file = stats_path.with_suffix('.npy')
954
+ t1 = time.time()
955
+ np.save(file, stats)
956
+ t2 = time.time()
957
+ x = np.load(file, allow_pickle=True)
958
+ print(f'stats.npy times: {time.time() - t2:.3f}s read, {t2 - t1:.3f}s write')
959
+
960
+ file = stats_path.with_suffix('.json')
961
+ t1 = time.time()
962
+ with open(file, 'w') as f:
963
+ json.dump(stats, f) # save stats *.json
964
+ t2 = time.time()
965
+ with open(file, 'r') as f:
966
+ x = json.load(f) # load hyps dict
967
+ print(f'stats.json times: {time.time() - t2:.3f}s read, {t2 - t1:.3f}s write')
968
+
969
  # Save, print and return
970
+ if hub:
971
+ print(f'Saving {stats_path.resolve()}...')
972
+ with open(stats_path, 'w') as f:
973
+ json.dump(stats, f) # save stats.json
974
  if verbose:
975
  print(json.dumps(stats, indent=2, sort_keys=False))
 
976
  return stats
utils/{google_utils.py β†’ downloads.py} RENAMED
@@ -1,4 +1,4 @@
1
- # Google utils: https://cloud.google.com/storage/docs/reference/libraries
2
 
3
  import os
4
  import platform
@@ -115,6 +115,10 @@ def get_token(cookie="./cookie"):
115
  return line.split()[-1]
116
  return ""
117
 
 
 
 
 
118
  # def upload_blob(bucket_name, source_file_name, destination_blob_name):
119
  # # Uploads a file to a bucket
120
  # # https://cloud.google.com/storage/docs/uploading-objects#storage-upload-object-python
 
1
+ # Download utils
2
 
3
  import os
4
  import platform
 
115
  return line.split()[-1]
116
  return ""
117
 
118
+
119
+ # Google utils: https://cloud.google.com/storage/docs/reference/libraries ----------------------------------------------
120
+ #
121
+ #
122
  # def upload_blob(bucket_name, source_file_name, destination_blob_name):
123
  # # Uploads a file to a bucket
124
  # # https://cloud.google.com/storage/docs/uploading-objects#storage-upload-object-python
utils/general.py CHANGED
@@ -24,7 +24,7 @@ import torch
24
  import torchvision
25
  import yaml
26
 
27
- from utils.google_utils import gsutil_getsize
28
  from utils.metrics import box_iou, fitness
29
  from utils.torch_utils import init_torch_seeds
30
 
@@ -224,16 +224,30 @@ def check_file(file):
224
 
225
 
226
  def check_dataset(data, autodownload=True):
227
- # Download dataset if not found locally
228
- path = Path(data.get('path', '')) # optional 'path' field
229
- if path:
230
- for k in 'train', 'val', 'test':
231
- if data.get(k): # prepend path
232
- data[k] = str(path / data[k]) if isinstance(data[k], str) else [str(path / x) for x in data[k]]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
233
 
234
  assert 'nc' in data, "Dataset 'nc' key missing."
235
  if 'names' not in data:
236
- data['names'] = [str(i) for i in range(data['nc'])] # assign class names if missing
237
  train, val, test, s = [data.get(x) for x in ('train', 'val', 'test', 'download')]
238
  if val:
239
  val = [Path(x).resolve() for x in (val if isinstance(val, list) else [val])] # val path
@@ -256,13 +270,17 @@ def check_dataset(data, autodownload=True):
256
  else:
257
  raise Exception('Dataset not found.')
258
 
 
 
259
 
260
  def download(url, dir='.', unzip=True, delete=True, curl=False, threads=1):
261
- # Multi-threaded file download and unzip function
262
  def download_one(url, dir):
263
  # Download 1 file
264
  f = dir / Path(url).name # filename
265
- if not f.exists():
 
 
266
  print(f'Downloading {url} to {f}...')
267
  if curl:
268
  os.system(f"curl -L '{url}' -o '{f}' --retry 9 -C -") # curl download, retry and resume on fail
@@ -286,7 +304,7 @@ def download(url, dir='.', unzip=True, delete=True, curl=False, threads=1):
286
  pool.close()
287
  pool.join()
288
  else:
289
- for u in tuple(url) if isinstance(url, str) else url:
290
  download_one(u, dir)
291
 
292
 
 
24
  import torchvision
25
  import yaml
26
 
27
+ from utils.downloads import gsutil_getsize
28
  from utils.metrics import box_iou, fitness
29
  from utils.torch_utils import init_torch_seeds
30
 
 
224
 
225
 
226
  def check_dataset(data, autodownload=True):
227
+ # Download and/or unzip dataset if not found locally
228
+ # Usage: https://github.com/ultralytics/yolov5/releases/download/v1.0/coco128_with_yaml.zip
229
+
230
+ # Download (optional)
231
+ extract_dir = ''
232
+ if isinstance(data, (str, Path)) and str(data).endswith('.zip'): # i.e. gs://bucket/dir/coco128.zip
233
+ download(data, dir='../datasets', unzip=True, delete=False, curl=False, threads=1)
234
+ data = next((Path('../datasets') / Path(data).stem).rglob('*.yaml'))
235
+ extract_dir, autodownload = data.parent, False
236
+
237
+ # Read yaml (optional)
238
+ if isinstance(data, (str, Path)):
239
+ with open(data, encoding='ascii', errors='ignore') as f:
240
+ data = yaml.safe_load(f) # dictionary
241
+
242
+ # Parse yaml
243
+ path = extract_dir or Path(data.get('path') or '') # optional 'path' default to '.'
244
+ for k in 'train', 'val', 'test':
245
+ if data.get(k): # prepend path
246
+ data[k] = str(path / data[k]) if isinstance(data[k], str) else [str(path / x) for x in data[k]]
247
 
248
  assert 'nc' in data, "Dataset 'nc' key missing."
249
  if 'names' not in data:
250
+ data['names'] = [f'class{i}' for i in range(data['nc'])] # assign class names if missing
251
  train, val, test, s = [data.get(x) for x in ('train', 'val', 'test', 'download')]
252
  if val:
253
  val = [Path(x).resolve() for x in (val if isinstance(val, list) else [val])] # val path
 
270
  else:
271
  raise Exception('Dataset not found.')
272
 
273
+ return data # dictionary
274
+
275
 
276
  def download(url, dir='.', unzip=True, delete=True, curl=False, threads=1):
277
+ # Multi-threaded file download and unzip function, used in data.yaml for autodownload
278
  def download_one(url, dir):
279
  # Download 1 file
280
  f = dir / Path(url).name # filename
281
+ if Path(url).is_file(): # exists in current path
282
+ Path(url).rename(f) # move to dir
283
+ elif not f.exists():
284
  print(f'Downloading {url} to {f}...')
285
  if curl:
286
  os.system(f"curl -L '{url}' -o '{f}' --retry 9 -C -") # curl download, retry and resume on fail
 
304
  pool.close()
305
  pool.join()
306
  else:
307
+ for u in [url] if isinstance(url, (str, Path)) else url:
308
  download_one(u, dir)
309
 
310
 
utils/loggers/wandb/wandb_utils.py CHANGED
@@ -100,7 +100,7 @@ class WandbLogger():
100
  """
101
 
102
  def __init__(self, opt, run_id, data_dict, job_type='Training'):
103
- '''
104
  - Initialize WandbLogger instance
105
  - Upload dataset if opt.upload_dataset is True
106
  - Setup trainig processes if job_type is 'Training'
@@ -111,7 +111,7 @@ class WandbLogger():
111
  data_dict (Dict) -- Dictionary conataining info about the dataset to be used
112
  job_type (str) -- To set the job_type for this run
113
 
114
- '''
115
  # Pre-training routine --
116
  self.job_type = job_type
117
  self.wandb, self.wandb_run = wandb, None if not wandb else wandb.run
@@ -157,7 +157,7 @@ class WandbLogger():
157
  self.data_dict = self.check_and_upload_dataset(opt)
158
 
159
  def check_and_upload_dataset(self, opt):
160
- '''
161
  Check if the dataset format is compatible and upload it as W&B artifact
162
 
163
  arguments:
@@ -165,7 +165,7 @@ class WandbLogger():
165
 
166
  returns:
167
  Updated dataset info dictionary where local dataset paths are replaced by WAND_ARFACT_PREFIX links.
168
- '''
169
  assert wandb, 'Install wandb to upload dataset'
170
  config_path = self.log_dataset_artifact(check_file(opt.data),
171
  opt.single_cls,
@@ -176,7 +176,7 @@ class WandbLogger():
176
  return wandb_data_dict
177
 
178
  def setup_training(self, opt, data_dict):
179
- '''
180
  Setup the necessary processes for training YOLO models:
181
  - Attempt to download model checkpoint and dataset artifacts if opt.resume stats with WANDB_ARTIFACT_PREFIX
182
  - Update data_dict, to contain info of previous run if resumed and the paths of dataset artifact if downloaded
@@ -188,7 +188,7 @@ class WandbLogger():
188
 
189
  returns:
190
  data_dict (Dict) -- contains the updated info about the dataset to be used for training
191
- '''
192
  self.log_dict, self.current_epoch = {}, 0
193
  self.bbox_interval = opt.bbox_interval
194
  if isinstance(opt.resume, str):
@@ -224,7 +224,7 @@ class WandbLogger():
224
  return data_dict
225
 
226
  def download_dataset_artifact(self, path, alias):
227
- '''
228
  download the model checkpoint artifact if the path starts with WANDB_ARTIFACT_PREFIX
229
 
230
  arguments:
@@ -234,7 +234,7 @@ class WandbLogger():
234
  returns:
235
  (str, wandb.Artifact) -- path of the downladed dataset and it's corresponding artifact object if dataset
236
  is found otherwise returns (None, None)
237
- '''
238
  if isinstance(path, str) and path.startswith(WANDB_ARTIFACT_PREFIX):
239
  artifact_path = Path(remove_prefix(path, WANDB_ARTIFACT_PREFIX) + ":" + alias)
240
  dataset_artifact = wandb.use_artifact(artifact_path.as_posix().replace("\\", "/"))
@@ -244,12 +244,12 @@ class WandbLogger():
244
  return None, None
245
 
246
  def download_model_artifact(self, opt):
247
- '''
248
  download the model checkpoint artifact if the resume path starts with WANDB_ARTIFACT_PREFIX
249
 
250
  arguments:
251
  opt (namespace) -- Commandline arguments for this run
252
- '''
253
  if opt.resume.startswith(WANDB_ARTIFACT_PREFIX):
254
  model_artifact = wandb.use_artifact(remove_prefix(opt.resume, WANDB_ARTIFACT_PREFIX) + ":latest")
255
  assert model_artifact is not None, 'Error: W&B model artifact doesn\'t exist'
@@ -262,7 +262,7 @@ class WandbLogger():
262
  return None, None
263
 
264
  def log_model(self, path, opt, epoch, fitness_score, best_model=False):
265
- '''
266
  Log the model checkpoint as W&B artifact
267
 
268
  arguments:
@@ -271,7 +271,7 @@ class WandbLogger():
271
  epoch (int) -- Current epoch number
272
  fitness_score (float) -- fitness score for current epoch
273
  best_model (boolean) -- Boolean representing if the current checkpoint is the best yet.
274
- '''
275
  model_artifact = wandb.Artifact('run_' + wandb.run.id + '_model', type='model', metadata={
276
  'original_url': str(path),
277
  'epochs_trained': epoch + 1,
@@ -286,7 +286,7 @@ class WandbLogger():
286
  print("Saving model artifact on epoch ", epoch + 1)
287
 
288
  def log_dataset_artifact(self, data_file, single_cls, project, overwrite_config=False):
289
- '''
290
  Log the dataset as W&B artifact and return the new data file with W&B links
291
 
292
  arguments:
@@ -298,10 +298,8 @@ class WandbLogger():
298
 
299
  returns:
300
  the new .yaml file with artifact links. it can be used to start training directly from artifacts
301
- '''
302
- with open(data_file, encoding='ascii', errors='ignore') as f:
303
- data = yaml.safe_load(f) # data dict
304
- check_dataset(data)
305
  nc, names = (1, ['item']) if single_cls else (int(data['nc']), data['names'])
306
  names = {k: v for k, v in enumerate(names)} # to index dictionary
307
  self.train_artifact = self.create_dataset_table(LoadImagesAndLabels(
@@ -330,17 +328,17 @@ class WandbLogger():
330
  return path
331
 
332
  def map_val_table_path(self):
333
- '''
334
  Map the validation dataset Table like name of file -> it's id in the W&B Table.
335
  Useful for - referencing artifacts for evaluation.
336
- '''
337
  self.val_table_path_map = {}
338
  print("Mapping dataset")
339
  for i, data in enumerate(tqdm(self.val_table.data)):
340
  self.val_table_path_map[data[3]] = data[0]
341
 
342
  def create_dataset_table(self, dataset, class_to_id, name='dataset'):
343
- '''
344
  Create and return W&B artifact containing W&B Table of the dataset.
345
 
346
  arguments:
@@ -350,7 +348,7 @@ class WandbLogger():
350
 
351
  returns:
352
  dataset artifact to be logged or used
353
- '''
354
  # TODO: Explore multiprocessing to slpit this loop parallely| This is essential for speeding up the the logging
355
  artifact = wandb.Artifact(name=name, type="dataset")
356
  img_files = tqdm([dataset.path]) if isinstance(dataset.path, str) and Path(dataset.path).is_dir() else None
@@ -382,14 +380,14 @@ class WandbLogger():
382
  return artifact
383
 
384
  def log_training_progress(self, predn, path, names):
385
- '''
386
  Build evaluation Table. Uses reference from validation dataset table.
387
 
388
  arguments:
389
  predn (list): list of predictions in the native space in the format - [xmin, ymin, xmax, ymax, confidence, class]
390
  path (str): local path of the current evaluation image
391
  names (dict(int, str)): hash map that maps class ids to labels
392
- '''
393
  class_set = wandb.Classes([{'id': id, 'name': name} for id, name in names.items()])
394
  box_data = []
395
  total_conf = 0
@@ -412,17 +410,17 @@ class WandbLogger():
412
  )
413
 
414
  def val_one_image(self, pred, predn, path, names, im):
415
- '''
416
  Log validation data for one image. updates the result Table if validation dataset is uploaded and log bbox media panel
417
 
418
  arguments:
419
  pred (list): list of scaled predictions in the format - [xmin, ymin, xmax, ymax, confidence, class]
420
  predn (list): list of predictions in the native space - [xmin, ymin, xmax, ymax, confidence, class]
421
  path (str): local path of the current evaluation image
422
- '''
423
  if self.val_table and self.result_table: # Log Table if Val dataset is uploaded as artifact
424
  self.log_training_progress(predn, path, names)
425
-
426
  if len(self.bbox_media_panel_images) < self.max_imgs_to_log and self.current_epoch > 0:
427
  if self.current_epoch % self.bbox_interval == 0:
428
  box_data = [{"position": {"minX": xyxy[0], "minY": xyxy[1], "maxX": xyxy[2], "maxY": xyxy[3]},
@@ -434,23 +432,23 @@ class WandbLogger():
434
  self.bbox_media_panel_images.append(wandb.Image(im, boxes=boxes, caption=path.name))
435
 
436
  def log(self, log_dict):
437
- '''
438
  save the metrics to the logging dictionary
439
 
440
  arguments:
441
  log_dict (Dict) -- metrics/media to be logged in current step
442
- '''
443
  if self.wandb_run:
444
  for key, value in log_dict.items():
445
  self.log_dict[key] = value
446
 
447
  def end_epoch(self, best_result=False):
448
- '''
449
  commit the log_dict, model artifacts and Tables to W&B and flush the log_dict.
450
 
451
  arguments:
452
  best_result (boolean): Boolean representing if the result of this evaluation is best or not
453
- '''
454
  if self.wandb_run:
455
  with all_logging_disabled():
456
  if self.bbox_media_panel_images:
@@ -468,9 +466,9 @@ class WandbLogger():
468
  self.result_artifact = wandb.Artifact("run_" + wandb.run.id + "_progress", "evaluation")
469
 
470
  def finish_run(self):
471
- '''
472
  Log metrics if any and finish the current W&B run
473
- '''
474
  if self.wandb_run:
475
  if self.log_dict:
476
  with all_logging_disabled():
 
100
  """
101
 
102
  def __init__(self, opt, run_id, data_dict, job_type='Training'):
103
+ """
104
  - Initialize WandbLogger instance
105
  - Upload dataset if opt.upload_dataset is True
106
  - Setup trainig processes if job_type is 'Training'
 
111
  data_dict (Dict) -- Dictionary conataining info about the dataset to be used
112
  job_type (str) -- To set the job_type for this run
113
 
114
+ """
115
  # Pre-training routine --
116
  self.job_type = job_type
117
  self.wandb, self.wandb_run = wandb, None if not wandb else wandb.run
 
157
  self.data_dict = self.check_and_upload_dataset(opt)
158
 
159
  def check_and_upload_dataset(self, opt):
160
+ """
161
  Check if the dataset format is compatible and upload it as W&B artifact
162
 
163
  arguments:
 
165
 
166
  returns:
167
  Updated dataset info dictionary where local dataset paths are replaced by WAND_ARFACT_PREFIX links.
168
+ """
169
  assert wandb, 'Install wandb to upload dataset'
170
  config_path = self.log_dataset_artifact(check_file(opt.data),
171
  opt.single_cls,
 
176
  return wandb_data_dict
177
 
178
  def setup_training(self, opt, data_dict):
179
+ """
180
  Setup the necessary processes for training YOLO models:
181
  - Attempt to download model checkpoint and dataset artifacts if opt.resume stats with WANDB_ARTIFACT_PREFIX
182
  - Update data_dict, to contain info of previous run if resumed and the paths of dataset artifact if downloaded
 
188
 
189
  returns:
190
  data_dict (Dict) -- contains the updated info about the dataset to be used for training
191
+ """
192
  self.log_dict, self.current_epoch = {}, 0
193
  self.bbox_interval = opt.bbox_interval
194
  if isinstance(opt.resume, str):
 
224
  return data_dict
225
 
226
  def download_dataset_artifact(self, path, alias):
227
+ """
228
  download the model checkpoint artifact if the path starts with WANDB_ARTIFACT_PREFIX
229
 
230
  arguments:
 
234
  returns:
235
  (str, wandb.Artifact) -- path of the downladed dataset and it's corresponding artifact object if dataset
236
  is found otherwise returns (None, None)
237
+ """
238
  if isinstance(path, str) and path.startswith(WANDB_ARTIFACT_PREFIX):
239
  artifact_path = Path(remove_prefix(path, WANDB_ARTIFACT_PREFIX) + ":" + alias)
240
  dataset_artifact = wandb.use_artifact(artifact_path.as_posix().replace("\\", "/"))
 
244
  return None, None
245
 
246
  def download_model_artifact(self, opt):
247
+ """
248
  download the model checkpoint artifact if the resume path starts with WANDB_ARTIFACT_PREFIX
249
 
250
  arguments:
251
  opt (namespace) -- Commandline arguments for this run
252
+ """
253
  if opt.resume.startswith(WANDB_ARTIFACT_PREFIX):
254
  model_artifact = wandb.use_artifact(remove_prefix(opt.resume, WANDB_ARTIFACT_PREFIX) + ":latest")
255
  assert model_artifact is not None, 'Error: W&B model artifact doesn\'t exist'
 
262
  return None, None
263
 
264
  def log_model(self, path, opt, epoch, fitness_score, best_model=False):
265
+ """
266
  Log the model checkpoint as W&B artifact
267
 
268
  arguments:
 
271
  epoch (int) -- Current epoch number
272
  fitness_score (float) -- fitness score for current epoch
273
  best_model (boolean) -- Boolean representing if the current checkpoint is the best yet.
274
+ """
275
  model_artifact = wandb.Artifact('run_' + wandb.run.id + '_model', type='model', metadata={
276
  'original_url': str(path),
277
  'epochs_trained': epoch + 1,
 
286
  print("Saving model artifact on epoch ", epoch + 1)
287
 
288
  def log_dataset_artifact(self, data_file, single_cls, project, overwrite_config=False):
289
+ """
290
  Log the dataset as W&B artifact and return the new data file with W&B links
291
 
292
  arguments:
 
298
 
299
  returns:
300
  the new .yaml file with artifact links. it can be used to start training directly from artifacts
301
+ """
302
+ data = check_dataset(data_file) # parse and check
 
 
303
  nc, names = (1, ['item']) if single_cls else (int(data['nc']), data['names'])
304
  names = {k: v for k, v in enumerate(names)} # to index dictionary
305
  self.train_artifact = self.create_dataset_table(LoadImagesAndLabels(
 
328
  return path
329
 
330
  def map_val_table_path(self):
331
+ """
332
  Map the validation dataset Table like name of file -> it's id in the W&B Table.
333
  Useful for - referencing artifacts for evaluation.
334
+ """
335
  self.val_table_path_map = {}
336
  print("Mapping dataset")
337
  for i, data in enumerate(tqdm(self.val_table.data)):
338
  self.val_table_path_map[data[3]] = data[0]
339
 
340
  def create_dataset_table(self, dataset, class_to_id, name='dataset'):
341
+ """
342
  Create and return W&B artifact containing W&B Table of the dataset.
343
 
344
  arguments:
 
348
 
349
  returns:
350
  dataset artifact to be logged or used
351
+ """
352
  # TODO: Explore multiprocessing to slpit this loop parallely| This is essential for speeding up the the logging
353
  artifact = wandb.Artifact(name=name, type="dataset")
354
  img_files = tqdm([dataset.path]) if isinstance(dataset.path, str) and Path(dataset.path).is_dir() else None
 
380
  return artifact
381
 
382
  def log_training_progress(self, predn, path, names):
383
+ """
384
  Build evaluation Table. Uses reference from validation dataset table.
385
 
386
  arguments:
387
  predn (list): list of predictions in the native space in the format - [xmin, ymin, xmax, ymax, confidence, class]
388
  path (str): local path of the current evaluation image
389
  names (dict(int, str)): hash map that maps class ids to labels
390
+ """
391
  class_set = wandb.Classes([{'id': id, 'name': name} for id, name in names.items()])
392
  box_data = []
393
  total_conf = 0
 
410
  )
411
 
412
  def val_one_image(self, pred, predn, path, names, im):
413
+ """
414
  Log validation data for one image. updates the result Table if validation dataset is uploaded and log bbox media panel
415
 
416
  arguments:
417
  pred (list): list of scaled predictions in the format - [xmin, ymin, xmax, ymax, confidence, class]
418
  predn (list): list of predictions in the native space - [xmin, ymin, xmax, ymax, confidence, class]
419
  path (str): local path of the current evaluation image
420
+ """
421
  if self.val_table and self.result_table: # Log Table if Val dataset is uploaded as artifact
422
  self.log_training_progress(predn, path, names)
423
+
424
  if len(self.bbox_media_panel_images) < self.max_imgs_to_log and self.current_epoch > 0:
425
  if self.current_epoch % self.bbox_interval == 0:
426
  box_data = [{"position": {"minX": xyxy[0], "minY": xyxy[1], "maxX": xyxy[2], "maxY": xyxy[3]},
 
432
  self.bbox_media_panel_images.append(wandb.Image(im, boxes=boxes, caption=path.name))
433
 
434
  def log(self, log_dict):
435
+ """
436
  save the metrics to the logging dictionary
437
 
438
  arguments:
439
  log_dict (Dict) -- metrics/media to be logged in current step
440
+ """
441
  if self.wandb_run:
442
  for key, value in log_dict.items():
443
  self.log_dict[key] = value
444
 
445
  def end_epoch(self, best_result=False):
446
+ """
447
  commit the log_dict, model artifacts and Tables to W&B and flush the log_dict.
448
 
449
  arguments:
450
  best_result (boolean): Boolean representing if the result of this evaluation is best or not
451
+ """
452
  if self.wandb_run:
453
  with all_logging_disabled():
454
  if self.bbox_media_panel_images:
 
466
  self.result_artifact = wandb.Artifact("run_" + wandb.run.id + "_progress", "evaluation")
467
 
468
  def finish_run(self):
469
+ """
470
  Log metrics if any and finish the current W&B run
471
+ """
472
  if self.wandb_run:
473
  if self.log_dict:
474
  with all_logging_disabled():
val.py CHANGED
@@ -123,9 +123,7 @@ def run(data,
123
  # model = nn.DataParallel(model)
124
 
125
  # Data
126
- with open(data, encoding='ascii', errors='ignore') as f:
127
- data = yaml.safe_load(f)
128
- check_dataset(data) # check
129
 
130
  # Half
131
  half &= device.type != 'cpu' # half precision only supported on CUDA
 
123
  # model = nn.DataParallel(model)
124
 
125
  # Data
126
+ data = check_dataset(data) # check
 
 
127
 
128
  # Half
129
  half &= device.type != 'cpu' # half precision only supported on CUDA