glenn-jocher
commited on
Commit
•
659ad74
1
Parent(s):
fd0b1cc
update get_voc.sh
Browse files- Dockerfile +1 -1
- data/get_voc.sh +1 -1
- detect.py +3 -3
- models/export.py +12 -0
Dockerfile
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
# Start FROM Nvidia PyTorch image https://ngc.nvidia.com/catalog/containers/nvidia:pytorch
|
2 |
-
FROM nvcr.io/nvidia/pytorch:20.
|
3 |
RUN pip install -U gsutil
|
4 |
|
5 |
# Create working directory
|
|
|
1 |
# Start FROM Nvidia PyTorch image https://ngc.nvidia.com/catalog/containers/nvidia:pytorch
|
2 |
+
FROM nvcr.io/nvidia/pytorch:20.03-py3
|
3 |
RUN pip install -U gsutil
|
4 |
|
5 |
# Create working directory
|
data/get_voc.sh
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
# PASCAL VOC dataset http://host.robots.ox.ac.uk/pascal/VOC/
|
2 |
-
# Download command: bash
|
3 |
# Train command: python train.py --data voc.yaml
|
4 |
# Dataset should be placed next to yolov5 folder:
|
5 |
# /parent_folder
|
|
|
1 |
# PASCAL VOC dataset http://host.robots.ox.ac.uk/pascal/VOC/
|
2 |
+
# Download command: bash ./data/get_voc.sh
|
3 |
# Train command: python train.py --data voc.yaml
|
4 |
# Dataset should be placed next to yolov5 folder:
|
5 |
# /parent_folder
|
detect.py
CHANGED
@@ -102,7 +102,7 @@ def detect(save_img=False):
|
|
102 |
|
103 |
if save_img or view_img: # Add bbox to image
|
104 |
label = '%s %.2f' % (names[int(cls)], conf)
|
105 |
-
plot_one_box(xyxy, im0, label=label, color=colors[int(cls)], line_thickness=
|
106 |
|
107 |
# Print time (inference + NMS)
|
108 |
print('%sDone. (%.3fs)' % (s, t2 - t1))
|
@@ -139,10 +139,10 @@ def detect(save_img=False):
|
|
139 |
|
140 |
if __name__ == '__main__':
|
141 |
parser = argparse.ArgumentParser()
|
142 |
-
parser.add_argument('--weights', type=str, default='weights/
|
143 |
parser.add_argument('--source', type=str, default='inference/images', help='source') # file/folder, 0 for webcam
|
144 |
parser.add_argument('--output', type=str, default='inference/output', help='output folder') # output folder
|
145 |
-
parser.add_argument('--img-size', type=int, default=
|
146 |
parser.add_argument('--conf-thres', type=float, default=0.4, help='object confidence threshold')
|
147 |
parser.add_argument('--iou-thres', type=float, default=0.5, help='IOU threshold for NMS')
|
148 |
parser.add_argument('--fourcc', type=str, default='mp4v', help='output video codec (verify ffmpeg support)')
|
|
|
102 |
|
103 |
if save_img or view_img: # Add bbox to image
|
104 |
label = '%s %.2f' % (names[int(cls)], conf)
|
105 |
+
plot_one_box(xyxy, im0, label=label, color=colors[int(cls)], line_thickness=1)
|
106 |
|
107 |
# Print time (inference + NMS)
|
108 |
print('%sDone. (%.3fs)' % (s, t2 - t1))
|
|
|
139 |
|
140 |
if __name__ == '__main__':
|
141 |
parser = argparse.ArgumentParser()
|
142 |
+
parser.add_argument('--weights', type=str, default='weights/yolov5m.pt', help='model.pt path')
|
143 |
parser.add_argument('--source', type=str, default='inference/images', help='source') # file/folder, 0 for webcam
|
144 |
parser.add_argument('--output', type=str, default='inference/output', help='output folder') # output folder
|
145 |
+
parser.add_argument('--img-size', type=int, default=1024, help='inference size (pixels)')
|
146 |
parser.add_argument('--conf-thres', type=float, default=0.4, help='object confidence threshold')
|
147 |
parser.add_argument('--iou-thres', type=float, default=0.5, help='IOU threshold for NMS')
|
148 |
parser.add_argument('--fourcc', type=str, default='mp4v', help='output video codec (verify ffmpeg support)')
|
models/export.py
CHANGED
@@ -56,5 +56,17 @@ if __name__ == '__main__':
|
|
56 |
except Exception as e:
|
57 |
print('ONNX export failure: %s' % e)
|
58 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
# Finish
|
60 |
print('\nExport complete. Visualize with https://github.com/lutzroeder/netron.')
|
|
|
56 |
except Exception as e:
|
57 |
print('ONNX export failure: %s' % e)
|
58 |
|
59 |
+
# CoreML export
|
60 |
+
try:
|
61 |
+
import coremltools as ct
|
62 |
+
|
63 |
+
print('\nStarting CoreML export with coremltools %s...' % ct.__version__)
|
64 |
+
model = ct.convert(ts, inputs=[ct.ImageType(name='images', shape=img.shape)]) # convert
|
65 |
+
f = opt.weights.replace('.pt', '.mlmodel') # filename
|
66 |
+
model.save(f)
|
67 |
+
print('CoreML export success, saved as %s' % f)
|
68 |
+
except Exception as e:
|
69 |
+
print('CoreML export failure: %s' % e)
|
70 |
+
|
71 |
# Finish
|
72 |
print('\nExport complete. Visualize with https://github.com/lutzroeder/netron.')
|