Commit
•
7316b78
1
Parent(s):
d1182c4
W&B: Refactor the wandb_utils.py file (#4496)
Browse files* Improve docstrings and run names
* default wandb login prompt with timeout
* return key
* Update api_key check logic
* Properly support zipped dataset feature
* update docstring
* Revert tuorial change
* extend changes to log_dataset
* add run name
* bug fix
* bug fix
* Update comment
* fix import check
* remove unused import
* Hardcore .yaml file extension
* reduce code
* Reformat using pycharm
* Remove redundant try catch
* More refactoring and bug fixes
* retry
* Reformat using pycharm
* respect LOGGERS include list
* Fix
* fix
* refactor constructor
* refactor
* refactor
* refactor
* PyCharm reformat
Co-authored-by: Glenn Jocher <[email protected]>
utils/loggers/wandb/wandb_utils.py
CHANGED
@@ -38,6 +38,19 @@ def check_wandb_config_file(data_config_file):
|
|
38 |
return data_config_file
|
39 |
|
40 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
def get_run_info(run_path):
|
42 |
run_path = Path(remove_prefix(run_path, WANDB_ARTIFACT_PREFIX))
|
43 |
run_id = run_path.stem
|
@@ -104,7 +117,7 @@ class WandbLogger():
|
|
104 |
- Initialize WandbLogger instance
|
105 |
- Upload dataset if opt.upload_dataset is True
|
106 |
- Setup trainig processes if job_type is 'Training'
|
107 |
-
|
108 |
arguments:
|
109 |
opt (namespace) -- Commandline arguments for this run
|
110 |
run_id (str) -- Run ID of W&B run to be resumed
|
@@ -147,26 +160,24 @@ class WandbLogger():
|
|
147 |
allow_val_change=True) if not wandb.run else wandb.run
|
148 |
if self.wandb_run:
|
149 |
if self.job_type == 'Training':
|
150 |
-
if
|
151 |
-
if opt.
|
152 |
self.wandb_artifact_data_dict = self.check_and_upload_dataset(opt)
|
153 |
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
self.data_dict = data_dict
|
158 |
-
else: #
|
159 |
-
self.data_dict =
|
160 |
else:
|
161 |
-
self.data_dict =
|
|
|
162 |
|
163 |
-
|
164 |
-
if not self.wandb_artifact_data_dict:
|
165 |
-
self.wandb_artifact_data_dict = self.data_dict
|
166 |
-
# write data_dict to config. useful for resuming from artifacts. Do this only when not resuming.
|
167 |
-
if not opt.resume:
|
168 |
self.wandb_run.config.update({'data_dict': self.wandb_artifact_data_dict},
|
169 |
allow_val_change=True)
|
|
|
170 |
|
171 |
if self.job_type == 'Dataset Creation':
|
172 |
self.data_dict = self.check_and_upload_dataset(opt)
|
@@ -174,10 +185,10 @@ class WandbLogger():
|
|
174 |
def check_and_upload_dataset(self, opt):
|
175 |
"""
|
176 |
Check if the dataset format is compatible and upload it as W&B artifact
|
177 |
-
|
178 |
arguments:
|
179 |
opt (namespace)-- Commandline arguments for current run
|
180 |
-
|
181 |
returns:
|
182 |
Updated dataset info dictionary where local dataset paths are replaced by WAND_ARFACT_PREFIX links.
|
183 |
"""
|
@@ -196,10 +207,10 @@ class WandbLogger():
|
|
196 |
- Attempt to download model checkpoint and dataset artifacts if opt.resume stats with WANDB_ARTIFACT_PREFIX
|
197 |
- Update data_dict, to contain info of previous run if resumed and the paths of dataset artifact if downloaded
|
198 |
- Setup log_dict, initialize bbox_interval
|
199 |
-
|
200 |
arguments:
|
201 |
opt (namespace) -- commandline arguments for this run
|
202 |
-
|
203 |
"""
|
204 |
self.log_dict, self.current_epoch = {}, 0
|
205 |
self.bbox_interval = opt.bbox_interval
|
@@ -211,9 +222,7 @@ class WandbLogger():
|
|
211 |
opt.weights, opt.save_period, opt.batch_size, opt.bbox_interval, opt.epochs, opt.hyp = str(
|
212 |
self.weights), config.save_period, config.batch_size, config.bbox_interval, config.epochs, \
|
213 |
config.hyp
|
214 |
-
|
215 |
-
else:
|
216 |
-
data_dict = self.data_dict
|
217 |
if self.val_artifact is None: # If --upload_dataset is set, use the existing artifact, don't download
|
218 |
self.train_artifact_path, self.train_artifact = self.download_dataset_artifact(data_dict.get('train'),
|
219 |
opt.artifact_alias)
|
@@ -243,11 +252,11 @@ class WandbLogger():
|
|
243 |
def download_dataset_artifact(self, path, alias):
|
244 |
"""
|
245 |
download the model checkpoint artifact if the path starts with WANDB_ARTIFACT_PREFIX
|
246 |
-
|
247 |
arguments:
|
248 |
path -- path of the dataset to be used for training
|
249 |
alias (str)-- alias of the artifact to be download/used for training
|
250 |
-
|
251 |
returns:
|
252 |
(str, wandb.Artifact) -- path of the downladed dataset and it's corresponding artifact object if dataset
|
253 |
is found otherwise returns (None, None)
|
@@ -263,7 +272,7 @@ class WandbLogger():
|
|
263 |
def download_model_artifact(self, opt):
|
264 |
"""
|
265 |
download the model checkpoint artifact if the resume path starts with WANDB_ARTIFACT_PREFIX
|
266 |
-
|
267 |
arguments:
|
268 |
opt (namespace) -- Commandline arguments for this run
|
269 |
"""
|
@@ -281,7 +290,7 @@ class WandbLogger():
|
|
281 |
def log_model(self, path, opt, epoch, fitness_score, best_model=False):
|
282 |
"""
|
283 |
Log the model checkpoint as W&B artifact
|
284 |
-
|
285 |
arguments:
|
286 |
path (Path) -- Path of directory containing the checkpoints
|
287 |
opt (namespace) -- Command line arguments for this run
|
@@ -305,14 +314,14 @@ class WandbLogger():
|
|
305 |
def log_dataset_artifact(self, data_file, single_cls, project, overwrite_config=False):
|
306 |
"""
|
307 |
Log the dataset as W&B artifact and return the new data file with W&B links
|
308 |
-
|
309 |
arguments:
|
310 |
data_file (str) -- the .yaml file with information about the dataset like - path, classes etc.
|
311 |
single_class (boolean) -- train multi-class data as single-class
|
312 |
project (str) -- project name. Used to construct the artifact path
|
313 |
overwrite_config (boolean) -- overwrites the data.yaml file if set to true otherwise creates a new
|
314 |
file with _wandb postfix. Eg -> data_wandb.yaml
|
315 |
-
|
316 |
returns:
|
317 |
the new .yaml file with artifact links. it can be used to start training directly from artifacts
|
318 |
"""
|
@@ -359,12 +368,12 @@ class WandbLogger():
|
|
359 |
def create_dataset_table(self, dataset, class_to_id, name='dataset'):
|
360 |
"""
|
361 |
Create and return W&B artifact containing W&B Table of the dataset.
|
362 |
-
|
363 |
arguments:
|
364 |
dataset (LoadImagesAndLabels) -- instance of LoadImagesAndLabels class used to iterate over the data to build Table
|
365 |
class_to_id (dict(int, str)) -- hash map that maps class ids to labels
|
366 |
name (str) -- name of the artifact
|
367 |
-
|
368 |
returns:
|
369 |
dataset artifact to be logged or used
|
370 |
"""
|
@@ -401,7 +410,7 @@ class WandbLogger():
|
|
401 |
def log_training_progress(self, predn, path, names):
|
402 |
"""
|
403 |
Build evaluation Table. Uses reference from validation dataset table.
|
404 |
-
|
405 |
arguments:
|
406 |
predn (list): list of predictions in the native space in the format - [xmin, ymin, xmax, ymax, confidence, class]
|
407 |
path (str): local path of the current evaluation image
|
@@ -431,7 +440,7 @@ class WandbLogger():
|
|
431 |
def val_one_image(self, pred, predn, path, names, im):
|
432 |
"""
|
433 |
Log validation data for one image. updates the result Table if validation dataset is uploaded and log bbox media panel
|
434 |
-
|
435 |
arguments:
|
436 |
pred (list): list of scaled predictions in the format - [xmin, ymin, xmax, ymax, confidence, class]
|
437 |
predn (list): list of predictions in the native space - [xmin, ymin, xmax, ymax, confidence, class]
|
@@ -453,7 +462,7 @@ class WandbLogger():
|
|
453 |
def log(self, log_dict):
|
454 |
"""
|
455 |
save the metrics to the logging dictionary
|
456 |
-
|
457 |
arguments:
|
458 |
log_dict (Dict) -- metrics/media to be logged in current step
|
459 |
"""
|
@@ -464,7 +473,7 @@ class WandbLogger():
|
|
464 |
def end_epoch(self, best_result=False):
|
465 |
"""
|
466 |
commit the log_dict, model artifacts and Tables to W&B and flush the log_dict.
|
467 |
-
|
468 |
arguments:
|
469 |
best_result (boolean): Boolean representing if the result of this evaluation is best or not
|
470 |
"""
|
|
|
38 |
return data_config_file
|
39 |
|
40 |
|
41 |
+
def check_wandb_dataset(data_file):
|
42 |
+
is_wandb_artifact = False
|
43 |
+
if check_file(data_file) and data_file.endswith('.yaml'):
|
44 |
+
with open(data_file, errors='ignore') as f:
|
45 |
+
data_dict = yaml.safe_load(f)
|
46 |
+
is_wandb_artifact = (data_dict['train'].startswith(WANDB_ARTIFACT_PREFIX) or
|
47 |
+
data_dict['val'].startswith(WANDB_ARTIFACT_PREFIX))
|
48 |
+
if is_wandb_artifact:
|
49 |
+
return data_dict
|
50 |
+
else:
|
51 |
+
return check_dataset(data_file)
|
52 |
+
|
53 |
+
|
54 |
def get_run_info(run_path):
|
55 |
run_path = Path(remove_prefix(run_path, WANDB_ARTIFACT_PREFIX))
|
56 |
run_id = run_path.stem
|
|
|
117 |
- Initialize WandbLogger instance
|
118 |
- Upload dataset if opt.upload_dataset is True
|
119 |
- Setup trainig processes if job_type is 'Training'
|
120 |
+
|
121 |
arguments:
|
122 |
opt (namespace) -- Commandline arguments for this run
|
123 |
run_id (str) -- Run ID of W&B run to be resumed
|
|
|
160 |
allow_val_change=True) if not wandb.run else wandb.run
|
161 |
if self.wandb_run:
|
162 |
if self.job_type == 'Training':
|
163 |
+
if opt.upload_dataset:
|
164 |
+
if not opt.resume:
|
165 |
self.wandb_artifact_data_dict = self.check_and_upload_dataset(opt)
|
166 |
|
167 |
+
if opt.resume:
|
168 |
+
# resume from artifact
|
169 |
+
if isinstance(opt.resume, str) and opt.resume.startswith(WANDB_ARTIFACT_PREFIX):
|
170 |
+
self.data_dict = dict(self.wandb_run.config.data_dict)
|
171 |
+
else: # local resume
|
172 |
+
self.data_dict = check_wandb_dataset(opt.data)
|
173 |
else:
|
174 |
+
self.data_dict = check_wandb_dataset(opt.data)
|
175 |
+
self.wandb_artifact_data_dict = self.wandb_artifact_data_dict or self.data_dict
|
176 |
|
177 |
+
# write data_dict to config. useful for resuming from artifacts. Do this only when not resuming.
|
|
|
|
|
|
|
|
|
178 |
self.wandb_run.config.update({'data_dict': self.wandb_artifact_data_dict},
|
179 |
allow_val_change=True)
|
180 |
+
self.setup_training(opt)
|
181 |
|
182 |
if self.job_type == 'Dataset Creation':
|
183 |
self.data_dict = self.check_and_upload_dataset(opt)
|
|
|
185 |
def check_and_upload_dataset(self, opt):
|
186 |
"""
|
187 |
Check if the dataset format is compatible and upload it as W&B artifact
|
188 |
+
|
189 |
arguments:
|
190 |
opt (namespace)-- Commandline arguments for current run
|
191 |
+
|
192 |
returns:
|
193 |
Updated dataset info dictionary where local dataset paths are replaced by WAND_ARFACT_PREFIX links.
|
194 |
"""
|
|
|
207 |
- Attempt to download model checkpoint and dataset artifacts if opt.resume stats with WANDB_ARTIFACT_PREFIX
|
208 |
- Update data_dict, to contain info of previous run if resumed and the paths of dataset artifact if downloaded
|
209 |
- Setup log_dict, initialize bbox_interval
|
210 |
+
|
211 |
arguments:
|
212 |
opt (namespace) -- commandline arguments for this run
|
213 |
+
|
214 |
"""
|
215 |
self.log_dict, self.current_epoch = {}, 0
|
216 |
self.bbox_interval = opt.bbox_interval
|
|
|
222 |
opt.weights, opt.save_period, opt.batch_size, opt.bbox_interval, opt.epochs, opt.hyp = str(
|
223 |
self.weights), config.save_period, config.batch_size, config.bbox_interval, config.epochs, \
|
224 |
config.hyp
|
225 |
+
data_dict = self.data_dict
|
|
|
|
|
226 |
if self.val_artifact is None: # If --upload_dataset is set, use the existing artifact, don't download
|
227 |
self.train_artifact_path, self.train_artifact = self.download_dataset_artifact(data_dict.get('train'),
|
228 |
opt.artifact_alias)
|
|
|
252 |
def download_dataset_artifact(self, path, alias):
|
253 |
"""
|
254 |
download the model checkpoint artifact if the path starts with WANDB_ARTIFACT_PREFIX
|
255 |
+
|
256 |
arguments:
|
257 |
path -- path of the dataset to be used for training
|
258 |
alias (str)-- alias of the artifact to be download/used for training
|
259 |
+
|
260 |
returns:
|
261 |
(str, wandb.Artifact) -- path of the downladed dataset and it's corresponding artifact object if dataset
|
262 |
is found otherwise returns (None, None)
|
|
|
272 |
def download_model_artifact(self, opt):
|
273 |
"""
|
274 |
download the model checkpoint artifact if the resume path starts with WANDB_ARTIFACT_PREFIX
|
275 |
+
|
276 |
arguments:
|
277 |
opt (namespace) -- Commandline arguments for this run
|
278 |
"""
|
|
|
290 |
def log_model(self, path, opt, epoch, fitness_score, best_model=False):
|
291 |
"""
|
292 |
Log the model checkpoint as W&B artifact
|
293 |
+
|
294 |
arguments:
|
295 |
path (Path) -- Path of directory containing the checkpoints
|
296 |
opt (namespace) -- Command line arguments for this run
|
|
|
314 |
def log_dataset_artifact(self, data_file, single_cls, project, overwrite_config=False):
|
315 |
"""
|
316 |
Log the dataset as W&B artifact and return the new data file with W&B links
|
317 |
+
|
318 |
arguments:
|
319 |
data_file (str) -- the .yaml file with information about the dataset like - path, classes etc.
|
320 |
single_class (boolean) -- train multi-class data as single-class
|
321 |
project (str) -- project name. Used to construct the artifact path
|
322 |
overwrite_config (boolean) -- overwrites the data.yaml file if set to true otherwise creates a new
|
323 |
file with _wandb postfix. Eg -> data_wandb.yaml
|
324 |
+
|
325 |
returns:
|
326 |
the new .yaml file with artifact links. it can be used to start training directly from artifacts
|
327 |
"""
|
|
|
368 |
def create_dataset_table(self, dataset, class_to_id, name='dataset'):
|
369 |
"""
|
370 |
Create and return W&B artifact containing W&B Table of the dataset.
|
371 |
+
|
372 |
arguments:
|
373 |
dataset (LoadImagesAndLabels) -- instance of LoadImagesAndLabels class used to iterate over the data to build Table
|
374 |
class_to_id (dict(int, str)) -- hash map that maps class ids to labels
|
375 |
name (str) -- name of the artifact
|
376 |
+
|
377 |
returns:
|
378 |
dataset artifact to be logged or used
|
379 |
"""
|
|
|
410 |
def log_training_progress(self, predn, path, names):
|
411 |
"""
|
412 |
Build evaluation Table. Uses reference from validation dataset table.
|
413 |
+
|
414 |
arguments:
|
415 |
predn (list): list of predictions in the native space in the format - [xmin, ymin, xmax, ymax, confidence, class]
|
416 |
path (str): local path of the current evaluation image
|
|
|
440 |
def val_one_image(self, pred, predn, path, names, im):
|
441 |
"""
|
442 |
Log validation data for one image. updates the result Table if validation dataset is uploaded and log bbox media panel
|
443 |
+
|
444 |
arguments:
|
445 |
pred (list): list of scaled predictions in the format - [xmin, ymin, xmax, ymax, confidence, class]
|
446 |
predn (list): list of predictions in the native space - [xmin, ymin, xmax, ymax, confidence, class]
|
|
|
462 |
def log(self, log_dict):
|
463 |
"""
|
464 |
save the metrics to the logging dictionary
|
465 |
+
|
466 |
arguments:
|
467 |
log_dict (Dict) -- metrics/media to be logged in current step
|
468 |
"""
|
|
|
473 |
def end_epoch(self, best_result=False):
|
474 |
"""
|
475 |
commit the log_dict, model artifacts and Tables to W&B and flush the log_dict.
|
476 |
+
|
477 |
arguments:
|
478 |
best_result (boolean): Boolean representing if the result of this evaluation is best or not
|
479 |
"""
|