Ayush Chaurasia glenn-jocher commited on
Commit
73a0669
1 Parent(s): 9646ca4

Start setup for improved W&B integration (#1948)

Browse files

* Add helper functions for wandb and artifacts

* cleanup

* Reorganize files

* Update wandb_utils.py

* Update log_dataset.py

We can remove this code, as the giou hyp has been deprecated for a while now.

* Reorganize and update dataloader call

* yaml.SafeLoader

* PEP8 reformat

* remove redundant checks

* Add helper functions for wandb and artifacts

* cleanup

* Reorganize files

* Update wandb_utils.py

* Update log_dataset.py

We can remove this code, as the giou hyp has been deprecated for a while now.

* Reorganize and update dataloader call

* yaml.SafeLoader

* PEP8 reformat

* remove redundant checks

* Update util files

* Update wandb_utils.py

* Remove word size

* Change path of labels.zip

* remove unused imports

* remove --rect

* log_dataset.py cleanup

* log_dataset.py cleanup2

* wandb_utils.py cleanup

* remove redundant id_count

* wandb_utils.py cleanup2

* rename cls

* use pathlib for zip

* rename dataloader to dataset

* Change import order

* Remove redundant code

* remove unused import

* remove unused imports

Co-authored-by: Glenn Jocher <[email protected]>

utils/datasets.py CHANGED
@@ -348,7 +348,8 @@ class LoadImagesAndLabels(Dataset): # for training/testing
348
  self.mosaic = self.augment and not self.rect # load 4 images at a time into a mosaic (only during training)
349
  self.mosaic_border = [-img_size // 2, -img_size // 2]
350
  self.stride = stride
351
-
 
352
  try:
353
  f = [] # image files
354
  for p in path if isinstance(path, list) else [path]:
 
348
  self.mosaic = self.augment and not self.rect # load 4 images at a time into a mosaic (only during training)
349
  self.mosaic_border = [-img_size // 2, -img_size // 2]
350
  self.stride = stride
351
+ self.path = path
352
+
353
  try:
354
  f = [] # image files
355
  for p in path if isinstance(path, list) else [path]:
utils/wandb_logging/__init__.py ADDED
File without changes
utils/wandb_logging/log_dataset.py ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ from pathlib import Path
3
+
4
+ import yaml
5
+
6
+ from wandb_utils import WandbLogger
7
+ from utils.datasets import LoadImagesAndLabels
8
+
9
+ WANDB_ARTIFACT_PREFIX = 'wandb-artifact://'
10
+
11
+
12
+ def create_dataset_artifact(opt):
13
+ with open(opt.data) as f:
14
+ data = yaml.load(f, Loader=yaml.SafeLoader) # data dict
15
+ logger = WandbLogger(opt, '', None, data, job_type='create_dataset')
16
+ nc, names = (1, ['item']) if opt.single_cls else (int(data['nc']), data['names'])
17
+ names = {k: v for k, v in enumerate(names)} # to index dictionary
18
+ logger.log_dataset_artifact(LoadImagesAndLabels(data['train']), names, name='train') # trainset
19
+ logger.log_dataset_artifact(LoadImagesAndLabels(data['val']), names, name='val') # valset
20
+
21
+ # Update data.yaml with artifact links
22
+ data['train'] = WANDB_ARTIFACT_PREFIX + str(Path(opt.project) / 'train')
23
+ data['val'] = WANDB_ARTIFACT_PREFIX + str(Path(opt.project) / 'val')
24
+ path = opt.data if opt.overwrite_config else opt.data.replace('.', '_wandb.') # updated data.yaml path
25
+ data.pop('download', None) # download via artifact instead of predefined field 'download:'
26
+ with open(path, 'w') as f:
27
+ yaml.dump(data, f)
28
+ print("New Config file => ", path)
29
+
30
+
31
+ if __name__ == '__main__':
32
+ parser = argparse.ArgumentParser()
33
+ parser.add_argument('--data', type=str, default='data/coco128.yaml', help='data.yaml path')
34
+ parser.add_argument('--single-cls', action='store_true', help='train as single-class dataset')
35
+ parser.add_argument('--project', type=str, default='YOLOv5', help='name of W&B Project')
36
+ parser.add_argument('--overwrite_config', action='store_true', help='overwrite data.yaml')
37
+ opt = parser.parse_args()
38
+
39
+ create_dataset_artifact(opt)
utils/wandb_logging/wandb_utils.py ADDED
@@ -0,0 +1,145 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import shutil
3
+ import sys
4
+ from datetime import datetime
5
+ from pathlib import Path
6
+
7
+ import torch
8
+
9
+ sys.path.append(str(Path(__file__).parent.parent.parent)) # add utils/ to path
10
+ from utils.general import colorstr, xywh2xyxy
11
+
12
+ try:
13
+ import wandb
14
+ except ImportError:
15
+ wandb = None
16
+ print(f"{colorstr('wandb: ')}Install Weights & Biases for YOLOv5 logging with 'pip install wandb' (recommended)")
17
+
18
+ WANDB_ARTIFACT_PREFIX = 'wandb-artifact://'
19
+
20
+
21
+ def remove_prefix(from_string, prefix):
22
+ return from_string[len(prefix):]
23
+
24
+
25
+ class WandbLogger():
26
+ def __init__(self, opt, name, run_id, data_dict, job_type='Training'):
27
+ self.wandb = wandb
28
+ self.wandb_run = wandb.init(config=opt, resume="allow",
29
+ project='YOLOv5' if opt.project == 'runs/train' else Path(opt.project).stem,
30
+ name=name,
31
+ job_type=job_type,
32
+ id=run_id) if self.wandb else None
33
+
34
+ if job_type == 'Training':
35
+ self.setup_training(opt, data_dict)
36
+ if opt.bbox_interval == -1:
37
+ opt.bbox_interval = (opt.epochs // 10) if opt.epochs > 10 else opt.epochs
38
+ if opt.save_period == -1:
39
+ opt.save_period = (opt.epochs // 10) if opt.epochs > 10 else opt.epochs
40
+
41
+ def setup_training(self, opt, data_dict):
42
+ self.log_dict = {}
43
+ self.train_artifact_path, self.trainset_artifact = \
44
+ self.download_dataset_artifact(data_dict['train'], opt.artifact_alias)
45
+ self.test_artifact_path, self.testset_artifact = \
46
+ self.download_dataset_artifact(data_dict['val'], opt.artifact_alias)
47
+ self.result_artifact, self.result_table, self.weights = None, None, None
48
+ if self.train_artifact_path is not None:
49
+ train_path = Path(self.train_artifact_path) / 'data/images/'
50
+ data_dict['train'] = str(train_path)
51
+ if self.test_artifact_path is not None:
52
+ test_path = Path(self.test_artifact_path) / 'data/images/'
53
+ data_dict['val'] = str(test_path)
54
+ self.result_artifact = wandb.Artifact("run_" + wandb.run.id + "_progress", "evaluation")
55
+ self.result_table = wandb.Table(["epoch", "id", "prediction", "avg_confidence"])
56
+ if opt.resume_from_artifact:
57
+ modeldir, _ = self.download_model_artifact(opt.resume_from_artifact)
58
+ if modeldir:
59
+ self.weights = Path(modeldir) / "best.pt"
60
+ opt.weights = self.weights
61
+
62
+ def download_dataset_artifact(self, path, alias):
63
+ if path.startswith(WANDB_ARTIFACT_PREFIX):
64
+ dataset_artifact = wandb.use_artifact(remove_prefix(path, WANDB_ARTIFACT_PREFIX) + ":" + alias)
65
+ assert dataset_artifact is not None, "'Error: W&B dataset artifact doesn\'t exist'"
66
+ datadir = dataset_artifact.download()
67
+ labels_zip = Path(datadir) / "data/labels.zip"
68
+ shutil.unpack_archive(labels_zip, Path(datadir) / 'data/labels', 'zip')
69
+ print("Downloaded dataset to : ", datadir)
70
+ return datadir, dataset_artifact
71
+ return None, None
72
+
73
+ def download_model_artifact(self, name):
74
+ model_artifact = wandb.use_artifact(name + ":latest")
75
+ assert model_artifact is not None, 'Error: W&B model artifact doesn\'t exist'
76
+ modeldir = model_artifact.download()
77
+ print("Downloaded model to : ", modeldir)
78
+ return modeldir, model_artifact
79
+
80
+ def log_model(self, path, opt, epoch):
81
+ datetime_suffix = datetime.today().strftime('%Y-%m-%d-%H-%M-%S')
82
+ model_artifact = wandb.Artifact('run_' + wandb.run.id + '_model', type='model', metadata={
83
+ 'original_url': str(path),
84
+ 'epoch': epoch + 1,
85
+ 'save period': opt.save_period,
86
+ 'project': opt.project,
87
+ 'datetime': datetime_suffix
88
+ })
89
+ model_artifact.add_file(str(path / 'last.pt'), name='last.pt')
90
+ model_artifact.add_file(str(path / 'best.pt'), name='best.pt')
91
+ wandb.log_artifact(model_artifact)
92
+ print("Saving model artifact on epoch ", epoch + 1)
93
+
94
+ def log_dataset_artifact(self, dataset, class_to_id, name='dataset'):
95
+ artifact = wandb.Artifact(name=name, type="dataset")
96
+ image_path = dataset.path
97
+ artifact.add_dir(image_path, name='data/images')
98
+ table = wandb.Table(columns=["id", "train_image", "Classes"])
99
+ class_set = wandb.Classes([{'id': id, 'name': name} for id, name in class_to_id.items()])
100
+ for si, (img, labels, paths, shapes) in enumerate(dataset):
101
+ height, width = shapes[0]
102
+ labels[:, 2:] = (xywh2xyxy(labels[:, 2:].view(-1, 4)))
103
+ labels[:, 2:] *= torch.Tensor([width, height, width, height])
104
+ box_data = []
105
+ img_classes = {}
106
+ for cls, *xyxy in labels[:, 1:].tolist():
107
+ cls = int(cls)
108
+ box_data.append({"position": {"minX": xyxy[0], "minY": xyxy[1], "maxX": xyxy[2], "maxY": xyxy[3]},
109
+ "class_id": cls,
110
+ "box_caption": "%s" % (class_to_id[cls]),
111
+ "scores": {"acc": 1},
112
+ "domain": "pixel"})
113
+ img_classes[cls] = class_to_id[cls]
114
+ boxes = {"ground_truth": {"box_data": box_data, "class_labels": class_to_id}} # inference-space
115
+ table.add_data(si, wandb.Image(paths, classes=class_set, boxes=boxes), json.dumps(img_classes))
116
+ artifact.add(table, name)
117
+ labels_path = 'labels'.join(image_path.rsplit('images', 1))
118
+ zip_path = Path(labels_path).parent / (name + '_labels.zip')
119
+ if not zip_path.is_file(): # make_archive won't check if file exists
120
+ shutil.make_archive(zip_path.with_suffix(''), 'zip', labels_path)
121
+ artifact.add_file(str(zip_path), name='data/labels.zip')
122
+ wandb.log_artifact(artifact)
123
+ print("Saving data to W&B...")
124
+
125
+ def log(self, log_dict):
126
+ if self.wandb_run:
127
+ for key, value in log_dict.items():
128
+ self.log_dict[key] = value
129
+
130
+ def end_epoch(self):
131
+ if self.wandb_run and self.log_dict:
132
+ wandb.log(self.log_dict)
133
+ self.log_dict = {}
134
+
135
+ def finish_run(self):
136
+ if self.wandb_run:
137
+ if self.result_artifact:
138
+ print("Add Training Progress Artifact")
139
+ self.result_artifact.add(self.result_table, 'result')
140
+ train_results = wandb.JoinedTable(self.testset_artifact.get("val"), self.result_table, "id")
141
+ self.result_artifact.add(train_results, 'joined_result')
142
+ wandb.log_artifact(self.result_artifact)
143
+ if self.log_dict:
144
+ wandb.log(self.log_dict)
145
+ wandb.run.finish()