glenn-jocher commited on
Commit
89c7a5b
1 Parent(s): 44f42b1

Update caching (#1496)

Browse files
Files changed (1) hide show
  1. utils/datasets.py +93 -87
utils/datasets.py CHANGED
@@ -22,12 +22,11 @@ from tqdm import tqdm
22
  from utils.general import xyxy2xywh, xywh2xyxy
23
  from utils.torch_utils import torch_distributed_zero_first
24
 
25
- logger = logging.getLogger(__name__)
26
-
27
  # Parameters
28
  help_url = 'https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data'
29
  img_formats = ['bmp', 'jpg', 'jpeg', 'png', 'tif', 'tiff', 'dng'] # acceptable image suffixes
30
  vid_formats = ['mov', 'avi', 'mp4', 'mpg', 'mpeg', 'm4v', 'wmv', 'mkv'] # acceptable video suffixes
 
31
 
32
  # Get orientation exif tag
33
  for orientation in ExifTags.TAGS.keys():
@@ -168,14 +167,14 @@ class LoadImages: # for inference
168
  ret_val, img0 = self.cap.read()
169
 
170
  self.frame += 1
171
- logger.debug('video %g/%g (%g/%g) %s: ', self.count + 1, self.nf, self.frame, self.nframes, path)
172
 
173
  else:
174
  # Read image
175
  self.count += 1
176
  img0 = cv2.imread(path) # BGR
177
  assert img0 is not None, 'Image Not Found ' + path
178
- logger.debug('image %g/%g %s: ', self.count, self.nf, path)
179
 
180
  # Padded resize
181
  img = letterbox(img0, new_shape=self.img_size)[0]
@@ -237,7 +236,7 @@ class LoadWebcam: # for inference
237
  # Print
238
  assert ret_val, 'Camera Error %s' % self.pipe
239
  img_path = 'webcam.jpg'
240
- logger.debug('webcam %g: ', self.count)
241
 
242
  # Padded resize
243
  img = letterbox(img0, new_shape=self.img_size)[0]
@@ -268,7 +267,7 @@ class LoadStreams: # multiple IP or RTSP cameras
268
  self.sources = sources
269
  for i, s in enumerate(sources):
270
  # Start the thread to read frames from the video stream
271
- logger.debug('%g/%g: %s... ', i + 1, n, s)
272
  cap = cv2.VideoCapture(eval(s) if s.isnumeric() else s)
273
  assert cap.isOpened(), 'Failed to open %s' % s
274
  w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
@@ -276,14 +275,15 @@ class LoadStreams: # multiple IP or RTSP cameras
276
  fps = cap.get(cv2.CAP_PROP_FPS) % 100
277
  _, self.imgs[i] = cap.read() # guarantee first frame
278
  thread = Thread(target=self.update, args=([i, cap]), daemon=True)
279
- logger.debug(' success (%gx%g at %.2f FPS).', w, h, fps)
280
  thread.start()
 
281
 
282
  # check for common shapes
283
  s = np.stack([letterbox(x, new_shape=self.img_size)[0].shape for x in self.imgs], 0) # inference shapes
284
  self.rect = np.unique(s, axis=0).shape[0] == 1 # rect inference if all shapes equal
285
  if not self.rect:
286
- logger.warning('WARNING: Different stream shapes detected. For optimal performance supply similarly-shaped streams.')
287
 
288
  def update(self, index, cap):
289
  # Read next stream frame in a daemon thread
@@ -324,6 +324,12 @@ class LoadStreams: # multiple IP or RTSP cameras
324
  return 0 # 1E12 frames = 32 streams at 30 FPS for 30 years
325
 
326
 
 
 
 
 
 
 
327
  class LoadImagesAndLabels(Dataset): # for training/testing
328
  def __init__(self, path, img_size=640, batch_size=16, augment=False, hyp=None, rect=False, image_weights=False,
329
  cache_images=False, single_cls=False, stride=32, pad=0.0, rank=-1):
@@ -336,11 +342,6 @@ class LoadImagesAndLabels(Dataset): # for training/testing
336
  self.mosaic_border = [-img_size // 2, -img_size // 2]
337
  self.stride = stride
338
 
339
- def img2label_paths(img_paths):
340
- # Define label paths as a function of image paths
341
- sa, sb = os.sep + 'images' + os.sep, os.sep + 'labels' + os.sep # /images/, /labels/ substrings
342
- return [x.replace(sa, sb, 1).replace('.' + x.split('.')[-1], '.txt') for x in img_paths]
343
-
344
  try:
345
  f = [] # image files
346
  for p in path if isinstance(path, list) else [path]:
@@ -361,14 +362,20 @@ class LoadImagesAndLabels(Dataset): # for training/testing
361
 
362
  # Check cache
363
  self.label_files = img2label_paths(self.img_files) # labels
364
- cache_path = str(Path(self.label_files[0]).parent) + '.cache' # cached labels
365
- if os.path.isfile(cache_path):
366
  cache = torch.load(cache_path) # load
367
  if cache['hash'] != get_hash(self.label_files + self.img_files): # dataset changed
368
  cache = self.cache_labels(cache_path) # re-cache
369
  else:
370
  cache = self.cache_labels(cache_path) # cache
371
 
 
 
 
 
 
 
372
  # Read cache
373
  cache.pop('hash') # remove hash
374
  labels, shapes = zip(*cache.values())
@@ -376,6 +383,9 @@ class LoadImagesAndLabels(Dataset): # for training/testing
376
  self.shapes = np.array(shapes, dtype=np.float64)
377
  self.img_files = list(cache.keys()) # update
378
  self.label_files = img2label_paths(cache.keys()) # update
 
 
 
379
 
380
  n = len(shapes) # number of images
381
  bi = np.floor(np.arange(n) / batch_size).astype(np.int) # batch index
@@ -407,67 +417,6 @@ class LoadImagesAndLabels(Dataset): # for training/testing
407
 
408
  self.batch_shapes = np.ceil(np.array(shapes) * img_size / stride + pad).astype(np.int) * stride
409
 
410
- # Check labels
411
- create_datasubset, extract_bounding_boxes, labels_loaded = False, False, False
412
- nm, nf, ne, ns, nd = 0, 0, 0, 0, 0 # number missing, found, empty, datasubset, duplicate
413
- pbar = enumerate(self.label_files)
414
- if rank in [-1, 0]:
415
- pbar = tqdm(pbar)
416
- for i, file in pbar:
417
- l = self.labels[i] # label
418
- if l is not None and l.shape[0]:
419
- assert l.shape[1] == 5, '> 5 label columns: %s' % file
420
- assert (l >= 0).all(), 'negative labels: %s' % file
421
- assert (l[:, 1:] <= 1).all(), 'non-normalized or out of bounds coordinate labels: %s' % file
422
- if np.unique(l, axis=0).shape[0] < l.shape[0]: # duplicate rows
423
- nd += 1 # logger.warning('WARNING: duplicate rows in %s', self.label_files[i]) # duplicate rows
424
- if single_cls:
425
- l[:, 0] = 0 # force dataset into single-class mode
426
- self.labels[i] = l
427
- nf += 1 # file found
428
-
429
- # Create subdataset (a smaller dataset)
430
- if create_datasubset and ns < 1E4:
431
- if ns == 0:
432
- create_folder(path='./datasubset')
433
- os.makedirs('./datasubset/images')
434
- exclude_classes = 43
435
- if exclude_classes not in l[:, 0]:
436
- ns += 1
437
- # shutil.copy(src=self.img_files[i], dst='./datasubset/images/') # copy image
438
- with open('./datasubset/images.txt', 'a') as f:
439
- f.write(self.img_files[i] + '\n')
440
-
441
- # Extract object detection boxes for a second stage classifier
442
- if extract_bounding_boxes:
443
- p = Path(self.img_files[i])
444
- img = cv2.imread(str(p))
445
- h, w = img.shape[:2]
446
- for j, x in enumerate(l):
447
- f = '%s%sclassifier%s%g_%g_%s' % (p.parent.parent, os.sep, os.sep, x[0], j, p.name)
448
- if not os.path.exists(Path(f).parent):
449
- os.makedirs(Path(f).parent) # make new output folder
450
-
451
- b = x[1:] * [w, h, w, h] # box
452
- b[2:] = b[2:].max() # rectangle to square
453
- b[2:] = b[2:] * 1.3 + 30 # pad
454
- b = xywh2xyxy(b.reshape(-1, 4)).ravel().astype(np.int)
455
-
456
- b[[0, 2]] = np.clip(b[[0, 2]], 0, w) # clip boxes outside of image
457
- b[[1, 3]] = np.clip(b[[1, 3]], 0, h)
458
- assert cv2.imwrite(f, img[b[1]:b[3], b[0]:b[2]]), 'Failure extracting classifier boxes'
459
- else:
460
- ne += 1 # logger.info('empty labels for image %s', self.img_files[i]) # file empty
461
- # os.system("rm '%s' '%s'" % (self.img_files[i], self.label_files[i])) # remove
462
-
463
- if rank in [-1, 0]:
464
- pbar.desc = 'Scanning labels %s (%g found, %g missing, %g empty, %g duplicate, for %g images)' % (
465
- cache_path, nf, nm, ne, nd, n)
466
- if nf == 0:
467
- s = 'WARNING: No labels found in %s. See %s' % (os.path.dirname(file) + os.sep, help_url)
468
- logger.info(s)
469
- assert not augment, '%s. Can not train without labels.' % s
470
-
471
  # Cache images into memory for faster training (WARNING: large datasets may exceed system RAM)
472
  self.imgs = [None] * n
473
  if cache_images:
@@ -480,28 +429,50 @@ class LoadImagesAndLabels(Dataset): # for training/testing
480
  gb += self.imgs[i].nbytes
481
  pbar.desc = 'Caching images (%.1fGB)' % (gb / 1E9)
482
 
483
- def cache_labels(self, path='labels.cache'):
484
  # Cache dataset labels, check images and read shapes
485
  x = {} # dict
 
486
  pbar = tqdm(zip(self.img_files, self.label_files), desc='Scanning images', total=len(self.img_files))
487
- for (img, label) in pbar:
488
  try:
489
- l = []
490
- im = Image.open(img)
491
  im.verify() # PIL verify
492
  shape = exif_size(im) # image size
493
  assert (shape[0] > 9) & (shape[1] > 9), 'image size <10 pixels'
494
- if os.path.isfile(label):
495
- with open(label, 'r') as f:
 
 
 
 
496
  l = np.array([x.split() for x in f.read().splitlines()], dtype=np.float32) # labels
497
- if len(l) == 0:
498
- l = np.zeros((0, 5), dtype=np.float32)
499
- x[img] = [l, shape]
 
 
 
 
 
 
 
 
500
  except Exception as e:
501
- logger.warning('WARNING: Ignoring corrupted image and/or label %s: %s', img, e)
 
 
 
 
 
 
 
502
 
503
  x['hash'] = get_hash(self.label_files + self.img_files)
 
504
  torch.save(x, path) # save for next time
 
505
  return x
506
 
507
  def __len__(self):
@@ -509,7 +480,7 @@ class LoadImagesAndLabels(Dataset): # for training/testing
509
 
510
  # def __iter__(self):
511
  # self.count = -1
512
- # logger.info('ran dataset iter')
513
  # #self.shuffled_vector = np.random.permutation(self.nF) if self.augment else np.arange(self.nF)
514
  # return self
515
 
@@ -906,6 +877,41 @@ def flatten_recursive(path='../coco128'):
906
  shutil.copyfile(file, new_path / Path(file).name)
907
 
908
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
909
  def autosplit(path='../coco128', weights=(0.9, 0.1, 0.0)): # from utils.datasets import *; autosplit('../coco128')
910
  """ Autosplit a dataset into train/val/test splits and save path/autosplit_*.txt files
911
  # Arguments
 
22
  from utils.general import xyxy2xywh, xywh2xyxy
23
  from utils.torch_utils import torch_distributed_zero_first
24
 
 
 
25
  # Parameters
26
  help_url = 'https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data'
27
  img_formats = ['bmp', 'jpg', 'jpeg', 'png', 'tif', 'tiff', 'dng'] # acceptable image suffixes
28
  vid_formats = ['mov', 'avi', 'mp4', 'mpg', 'mpeg', 'm4v', 'wmv', 'mkv'] # acceptable video suffixes
29
+ logger = logging.getLogger(__name__)
30
 
31
  # Get orientation exif tag
32
  for orientation in ExifTags.TAGS.keys():
 
167
  ret_val, img0 = self.cap.read()
168
 
169
  self.frame += 1
170
+ print('video %g/%g (%g/%g) %s: ' % (self.count + 1, self.nf, self.frame, self.nframes, path), end='')
171
 
172
  else:
173
  # Read image
174
  self.count += 1
175
  img0 = cv2.imread(path) # BGR
176
  assert img0 is not None, 'Image Not Found ' + path
177
+ print('image %g/%g %s: ' % (self.count, self.nf, path), end='')
178
 
179
  # Padded resize
180
  img = letterbox(img0, new_shape=self.img_size)[0]
 
236
  # Print
237
  assert ret_val, 'Camera Error %s' % self.pipe
238
  img_path = 'webcam.jpg'
239
+ print('webcam %g: ' % self.count, end='')
240
 
241
  # Padded resize
242
  img = letterbox(img0, new_shape=self.img_size)[0]
 
267
  self.sources = sources
268
  for i, s in enumerate(sources):
269
  # Start the thread to read frames from the video stream
270
+ print('%g/%g: %s... ' % (i + 1, n, s), end='')
271
  cap = cv2.VideoCapture(eval(s) if s.isnumeric() else s)
272
  assert cap.isOpened(), 'Failed to open %s' % s
273
  w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
 
275
  fps = cap.get(cv2.CAP_PROP_FPS) % 100
276
  _, self.imgs[i] = cap.read() # guarantee first frame
277
  thread = Thread(target=self.update, args=([i, cap]), daemon=True)
278
+ print(' success (%gx%g at %.2f FPS).' % (w, h, fps))
279
  thread.start()
280
+ print('') # newline
281
 
282
  # check for common shapes
283
  s = np.stack([letterbox(x, new_shape=self.img_size)[0].shape for x in self.imgs], 0) # inference shapes
284
  self.rect = np.unique(s, axis=0).shape[0] == 1 # rect inference if all shapes equal
285
  if not self.rect:
286
+ print('WARNING: Different stream shapes detected. For optimal performance supply similarly-shaped streams.')
287
 
288
  def update(self, index, cap):
289
  # Read next stream frame in a daemon thread
 
324
  return 0 # 1E12 frames = 32 streams at 30 FPS for 30 years
325
 
326
 
327
+ def img2label_paths(img_paths):
328
+ # Define label paths as a function of image paths
329
+ sa, sb = os.sep + 'images' + os.sep, os.sep + 'labels' + os.sep # /images/, /labels/ substrings
330
+ return [x.replace(sa, sb, 1).replace('.' + x.split('.')[-1], '.txt') for x in img_paths]
331
+
332
+
333
  class LoadImagesAndLabels(Dataset): # for training/testing
334
  def __init__(self, path, img_size=640, batch_size=16, augment=False, hyp=None, rect=False, image_weights=False,
335
  cache_images=False, single_cls=False, stride=32, pad=0.0, rank=-1):
 
342
  self.mosaic_border = [-img_size // 2, -img_size // 2]
343
  self.stride = stride
344
 
 
 
 
 
 
345
  try:
346
  f = [] # image files
347
  for p in path if isinstance(path, list) else [path]:
 
362
 
363
  # Check cache
364
  self.label_files = img2label_paths(self.img_files) # labels
365
+ cache_path = Path(self.label_files[0]).parent.with_suffix('.cache') # cached labels
366
+ if cache_path.is_file():
367
  cache = torch.load(cache_path) # load
368
  if cache['hash'] != get_hash(self.label_files + self.img_files): # dataset changed
369
  cache = self.cache_labels(cache_path) # re-cache
370
  else:
371
  cache = self.cache_labels(cache_path) # cache
372
 
373
+ # Display cache
374
+ [nf, nm, ne, nc, n] = cache.pop('results') # found, missing, empty, corrupted, total
375
+ desc = f"Scanning '{cache_path}' for images and labels... {nf} found, {nm} missing, {ne} empty, {nc} corrupted"
376
+ tqdm(None, desc=desc, total=n, initial=n)
377
+ assert nf > 0 or not augment, f'No labels found in {cache_path}. Can not train without labels. See {help_url}'
378
+
379
  # Read cache
380
  cache.pop('hash') # remove hash
381
  labels, shapes = zip(*cache.values())
 
383
  self.shapes = np.array(shapes, dtype=np.float64)
384
  self.img_files = list(cache.keys()) # update
385
  self.label_files = img2label_paths(cache.keys()) # update
386
+ if single_cls:
387
+ for x in self.labels:
388
+ x[:, 0] = 0
389
 
390
  n = len(shapes) # number of images
391
  bi = np.floor(np.arange(n) / batch_size).astype(np.int) # batch index
 
417
 
418
  self.batch_shapes = np.ceil(np.array(shapes) * img_size / stride + pad).astype(np.int) * stride
419
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
420
  # Cache images into memory for faster training (WARNING: large datasets may exceed system RAM)
421
  self.imgs = [None] * n
422
  if cache_images:
 
429
  gb += self.imgs[i].nbytes
430
  pbar.desc = 'Caching images (%.1fGB)' % (gb / 1E9)
431
 
432
+ def cache_labels(self, path=Path('./labels.cache')):
433
  # Cache dataset labels, check images and read shapes
434
  x = {} # dict
435
+ nm, nf, ne, nc = 0, 0, 0, 0 # number missing, found, empty, duplicate
436
  pbar = tqdm(zip(self.img_files, self.label_files), desc='Scanning images', total=len(self.img_files))
437
+ for i, (im_file, lb_file) in enumerate(pbar):
438
  try:
439
+ # verify images
440
+ im = Image.open(im_file)
441
  im.verify() # PIL verify
442
  shape = exif_size(im) # image size
443
  assert (shape[0] > 9) & (shape[1] > 9), 'image size <10 pixels'
444
+
445
+ # verify labels
446
+ l = []
447
+ if os.path.isfile(lb_file):
448
+ nf += 1 # label found
449
+ with open(lb_file, 'r') as f:
450
  l = np.array([x.split() for x in f.read().splitlines()], dtype=np.float32) # labels
451
+ if len(l):
452
+ assert l.shape[1] == 5, 'labels require 5 columns each'
453
+ assert (l >= 0).all(), 'negative labels'
454
+ assert (l[:, 1:] <= 1).all(), 'non-normalized or out of bounds coordinate labels'
455
+ assert np.unique(l, axis=0).shape[0] == l.shape[0], 'duplicate labels'
456
+ else:
457
+ ne += 1 # label empty
458
+ l = np.zeros((0, 5), dtype=np.float32)
459
+ else:
460
+ nm += 1 # label missing
461
+ x[im_file] = [l, shape]
462
  except Exception as e:
463
+ nc += 1
464
+ print('WARNING: Ignoring corrupted image and/or label %s: %s' % (im_file, e))
465
+
466
+ pbar.desc = f"Scanning '{path.parent / path.stem}' for images and labels... " \
467
+ f"{nf} found, {nm} missing, {ne} empty, {nc} corrupted"
468
+
469
+ if nf == 0:
470
+ print(f'WARNING: No labels found in {path}. See {help_url}')
471
 
472
  x['hash'] = get_hash(self.label_files + self.img_files)
473
+ x['results'] = [nf, nm, ne, nc, i]
474
  torch.save(x, path) # save for next time
475
+ logging.info(f"New cache created: '{path}'")
476
  return x
477
 
478
  def __len__(self):
 
480
 
481
  # def __iter__(self):
482
  # self.count = -1
483
+ # print('ran dataset iter')
484
  # #self.shuffled_vector = np.random.permutation(self.nF) if self.augment else np.arange(self.nF)
485
  # return self
486
 
 
877
  shutil.copyfile(file, new_path / Path(file).name)
878
 
879
 
880
+ def extract_boxes(path='../coco128/'): # from utils.datasets import *; extract_boxes('../coco128')
881
+ # Convert detection dataset into classification dataset, with one directory per class
882
+
883
+ path = Path(path) # images dir
884
+ shutil.rmtree(path / 'classifier') if (path / 'classifier').is_dir() else None # remove existing
885
+ files = list(path.rglob('*.*'))
886
+ n = len(files) # number of files
887
+ for im_file in tqdm(files, total=n):
888
+ if im_file.suffix[1:] in img_formats:
889
+ # image
890
+ im = cv2.imread(str(im_file))[..., ::-1] # BGR to RGB
891
+ h, w = im.shape[:2]
892
+
893
+ # labels
894
+ lb_file = Path(img2label_paths([str(im_file)])[0])
895
+ if Path(lb_file).exists():
896
+ with open(lb_file, 'r') as f:
897
+ lb = np.array([x.split() for x in f.read().splitlines()], dtype=np.float32) # labels
898
+
899
+ for j, x in enumerate(lb):
900
+ c = int(x[0]) # class
901
+ f = (path / 'classifier') / f'{c}' / f'{path.stem}_{im_file.stem}_{j}.jpg' # new filename
902
+ if not f.parent.is_dir():
903
+ f.parent.mkdir(parents=True)
904
+
905
+ b = x[1:] * [w, h, w, h] # box
906
+ # b[2:] = b[2:].max() # rectangle to square
907
+ b[2:] = b[2:] * 1.2 + 3 # pad
908
+ b = xywh2xyxy(b.reshape(-1, 4)).ravel().astype(np.int)
909
+
910
+ b[[0, 2]] = np.clip(b[[0, 2]], 0, w) # clip boxes outside of image
911
+ b[[1, 3]] = np.clip(b[[1, 3]], 0, h)
912
+ assert cv2.imwrite(str(f), im[b[1]:b[3], b[0]:b[2]]), f'box failure in {f}'
913
+
914
+
915
  def autosplit(path='../coco128', weights=(0.9, 0.1, 0.0)): # from utils.datasets import *; autosplit('../coco128')
916
  """ Autosplit a dataset into train/val/test splits and save path/autosplit_*.txt files
917
  # Arguments