glenn-jocher
commited on
Commit
β’
956be8e
1
Parent(s):
938efe5
YOLOv5 release v6.0 (#5141)
Browse files* Update P5 models
* Update P6 models
* Update with GFLOPs and Params
* Update with GFLOPs and Params
* Update README
* Update
* Update README
* Update
* Update
* Add times
* Update README
* Update results
* Update results
* Update results
* Update hyps
* Update plots
* Update plots
* Update README.md
* Add nano models to hubconf.py
- README.md +25 -31
- data/hyps/{hyp.scratch-p6.yaml β hyp.scratch-high.yaml} +3 -3
- data/hyps/hyp.scratch-low.yaml +34 -0
- data/hyps/hyp.scratch.yaml +1 -1
- hubconf.py +10 -0
- models/hub/yolov5l6.yaml +6 -6
- models/hub/yolov5m6.yaml +6 -6
- models/hub/yolov5n6.yaml +60 -0
- models/hub/yolov5s6.yaml +6 -6
- models/hub/yolov5x6.yaml +6 -6
- models/yolov5l.yaml +6 -6
- models/yolov5m.yaml +6 -6
- models/yolov5n.yaml +48 -0
- models/yolov5s.yaml +6 -6
- models/yolov5x.yaml +6 -6
README.md
CHANGED
@@ -191,7 +191,7 @@ Get started in seconds with our verified environments. Click each icon below for
|
|
191 |
</a>
|
192 |
</div>
|
193 |
|
194 |
-
|Weights and Biases|Roboflow
|
195 |
|:-:|:-:|
|
196 |
|Automatically track and visualize all your YOLOv5 training runs in the cloud with [Weights & Biases](https://wandb.ai/site?utm_campaign=repo_yolo_readme)|Label and automatically export your custom datasets directly to YOLOv5 for training with [Roboflow](https://roboflow.com/?ref=ultralytics) |
|
197 |
|
@@ -207,53 +207,47 @@ We are super excited about our first-ever Ultralytics YOLOv5 π EXPORT Competi
|
|
207 |
|
208 |
## <div align="center">Why YOLOv5</div>
|
209 |
|
210 |
-
<p align="
|
211 |
<details>
|
212 |
<summary>YOLOv5-P5 640 Figure (click to expand)</summary>
|
213 |
|
214 |
-
<p align="
|
215 |
</details>
|
216 |
<details>
|
217 |
<summary>Figure Notes (click to expand)</summary>
|
218 |
|
219 |
-
*
|
220 |
-
|
221 |
-
* EfficientDet data from [google/automl](https://github.com/google/automl) at batch size 8.
|
222 |
-
* **Reproduce** by
|
223 |
-
`python val.py --task study --data coco.yaml --iou 0.7 --weights yolov5s6.pt yolov5m6.pt yolov5l6.pt yolov5x6.pt`
|
224 |
-
|
225 |
</details>
|
226 |
|
227 |
### Pretrained Checkpoints
|
228 |
|
229 |
[assets]: https://github.com/ultralytics/yolov5/releases
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|[
|
235 |
-
|[
|
236 |
-
|[
|
237 |
-
|
|
238 |
-
|[
|
239 |
-
|
|
240 |
-
|[
|
241 |
-
|[
|
242 |
-
|
|
243 |
-
|[
|
|
|
244 |
|
245 |
<details>
|
246 |
<summary>Table Notes (click to expand)</summary>
|
247 |
|
248 |
* All checkpoints are trained to 300 epochs with default settings and hyperparameters.
|
249 |
-
*
|
250 |
-
|
251 |
-
* **
|
252 |
-
* **Speed** averaged over 5000 COCO val2017 images using a
|
253 |
-
GCP [n1-standard-16](https://cloud.google.com/compute/docs/machine-types#n1_standard_machine_types) V100 instance, and
|
254 |
-
includes FP16 inference, postprocessing and NMS.<br>**Reproduce**
|
255 |
-
by `python val.py --data coco.yaml --img 640 --conf 0.25 --iou 0.45 --half`
|
256 |
-
* **TTA** [Test Time Augmentation](https://github.com/ultralytics/yolov5/issues/303) includes reflection and scale.<br>**Reproduce** by `python val.py --data coco.yaml --img 1536 --iou 0.7 --augment`
|
257 |
|
258 |
</details>
|
259 |
|
|
|
191 |
</a>
|
192 |
</div>
|
193 |
|
194 |
+
|Weights and Biases|Roboflow β NEW|
|
195 |
|:-:|:-:|
|
196 |
|Automatically track and visualize all your YOLOv5 training runs in the cloud with [Weights & Biases](https://wandb.ai/site?utm_campaign=repo_yolo_readme)|Label and automatically export your custom datasets directly to YOLOv5 for training with [Roboflow](https://roboflow.com/?ref=ultralytics) |
|
197 |
|
|
|
207 |
|
208 |
## <div align="center">Why YOLOv5</div>
|
209 |
|
210 |
+
<p align="left"><img width="800" src="https://user-images.githubusercontent.com/26833433/136901921-abcfcd9d-f978-4942-9b97-0e3f202907df.png"></p>
|
211 |
<details>
|
212 |
<summary>YOLOv5-P5 640 Figure (click to expand)</summary>
|
213 |
|
214 |
+
<p align="left"><img width="800" src="https://user-images.githubusercontent.com/26833433/136763877-b174052b-c12f-48d2-8bc4-545e3853398e.png"></p>
|
215 |
</details>
|
216 |
<details>
|
217 |
<summary>Figure Notes (click to expand)</summary>
|
218 |
|
219 |
+
* **COCO AP val** denotes [email protected]:0.95 metric measured on the 5000-image [COCO val2017](http://cocodataset.org) dataset over various inference sizes from 256 to 1536.
|
220 |
+
* **GPU Speed** measures average inference time per image on [COCO val2017](http://cocodataset.org) dataset using a [AWS p3.2xlarge](https://aws.amazon.com/ec2/instance-types/p3/) V100 instance at batch-size 32.
|
221 |
+
* **EfficientDet** data from [google/automl](https://github.com/google/automl) at batch size 8.
|
222 |
+
* **Reproduce** by `python val.py --task study --data coco.yaml --iou 0.7 --weights yolov5n6.pt yolov5s6.pt yolov5m6.pt yolov5l6.pt yolov5x6.pt`
|
|
|
|
|
223 |
</details>
|
224 |
|
225 |
### Pretrained Checkpoints
|
226 |
|
227 |
[assets]: https://github.com/ultralytics/yolov5/releases
|
228 |
+
[TTA]: https://github.com/ultralytics/yolov5/issues/303
|
229 |
+
|
230 |
+
|Model |size<br><sup>(pixels) |mAP<sup>val<br>0.5:0.95 |mAP<sup>val<br>0.5 |Speed<br><sup>CPU b1<br>(ms) |Speed<br><sup>V100 b1<br>(ms) |Speed<br><sup>V100 b32<br>(ms) |params<br><sup>(M) |FLOPs<br><sup>@640 (B)
|
231 |
+
|--- |--- |--- |--- |--- |--- |--- |--- |---
|
232 |
+
|[YOLOv5n][assets] |640 |28.4 |46.0 |**45** |**6.3**|**0.6**|**1.9**|**4.5**
|
233 |
+
|[YOLOv5s][assets] |640 |37.2 |56.0 |98 |6.4 |0.9 |7.2 |16.5
|
234 |
+
|[YOLOv5m][assets] |640 |45.2 |63.9 |224 |8.2 |1.7 |21.2 |49.0
|
235 |
+
|[YOLOv5l][assets] |640 |48.8 |67.2 |430 |10.1 |2.7 |46.5 |109.1
|
236 |
+
|[YOLOv5x][assets] |640 |50.7 |68.9 |766 |12.1 |4.8 |86.7 |205.7
|
237 |
+
| | | | | | | | |
|
238 |
+
|[YOLOv5n6][assets] |1280 |34.0 |50.7 |153 |8.1 |2.1 |3.2 |4.6
|
239 |
+
|[YOLOv5s6][assets] |1280 |44.5 |63.0 |385 |8.2 |3.6 |16.8 |12.6
|
240 |
+
|[YOLOv5m6][assets] |1280 |51.0 |69.0 |887 |11.1 |6.8 |35.7 |50.0
|
241 |
+
|[YOLOv5l6][assets] |1280 |53.6 |71.6 |1784 |15.8 |10.5 |76.8 |111.4
|
242 |
+
|[YOLOv5x6][assets]<br>+ [TTA][TTA]|1280<br>1536 |54.7<br>**55.4** |**72.4**<br>72.3 |3136<br>- |26.2<br>- |19.4<br>- |140.7<br>- |209.8<br>-
|
243 |
|
244 |
<details>
|
245 |
<summary>Table Notes (click to expand)</summary>
|
246 |
|
247 |
* All checkpoints are trained to 300 epochs with default settings and hyperparameters.
|
248 |
+
* **mAP<sup>val</sup>** values are for single-model single-scale on [COCO val2017](http://cocodataset.org) dataset.<br>Reproduce by `python val.py --data coco.yaml --img 640 --conf 0.001 --iou 0.65`
|
249 |
+
* **Speed** averaged over COCO val images using a [AWS p3.2xlarge](https://aws.amazon.com/ec2/instance-types/p3/) instance. NMS times (~1 ms/img) not included.<br>Reproduce by `python val.py --data coco.yaml --img 640 --conf 0.25 --iou 0.45`
|
250 |
+
* **TTA** [Test Time Augmentation](https://github.com/ultralytics/yolov5/issues/303) includes reflection and scale augmentations.<br>Reproduce by `python val.py --data coco.yaml --img 1536 --iou 0.7 --augment`
|
|
|
|
|
|
|
|
|
|
|
251 |
|
252 |
</details>
|
253 |
|
data/hyps/{hyp.scratch-p6.yaml β hyp.scratch-high.yaml}
RENAMED
@@ -1,5 +1,5 @@
|
|
1 |
# YOLOv5 π by Ultralytics, GPL-3.0 license
|
2 |
-
# Hyperparameters for COCO training from scratch
|
3 |
# python train.py --batch 32 --cfg yolov5m6.yaml --weights '' --data coco.yaml --img 1280 --epochs 300
|
4 |
# See tutorials for hyperparameter evolution https://github.com/ultralytics/yolov5#tutorials
|
5 |
|
@@ -30,5 +30,5 @@ perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
|
|
30 |
flipud: 0.0 # image flip up-down (probability)
|
31 |
fliplr: 0.5 # image flip left-right (probability)
|
32 |
mosaic: 1.0 # image mosaic (probability)
|
33 |
-
mixup: 0.
|
34 |
-
copy_paste: 0.
|
|
|
1 |
# YOLOv5 π by Ultralytics, GPL-3.0 license
|
2 |
+
# Hyperparameters for high-augmentation COCO training from scratch
|
3 |
# python train.py --batch 32 --cfg yolov5m6.yaml --weights '' --data coco.yaml --img 1280 --epochs 300
|
4 |
# See tutorials for hyperparameter evolution https://github.com/ultralytics/yolov5#tutorials
|
5 |
|
|
|
30 |
flipud: 0.0 # image flip up-down (probability)
|
31 |
fliplr: 0.5 # image flip left-right (probability)
|
32 |
mosaic: 1.0 # image mosaic (probability)
|
33 |
+
mixup: 0.1 # image mixup (probability)
|
34 |
+
copy_paste: 0.1 # segment copy-paste (probability)
|
data/hyps/hyp.scratch-low.yaml
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 π by Ultralytics, GPL-3.0 license
|
2 |
+
# Hyperparameters for low-augmentation COCO training from scratch
|
3 |
+
# python train.py --batch 64 --cfg yolov5n6.yaml --weights '' --data coco.yaml --img 640 --epochs 300 --linear
|
4 |
+
# See tutorials for hyperparameter evolution https://github.com/ultralytics/yolov5#tutorials
|
5 |
+
|
6 |
+
lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)
|
7 |
+
lrf: 0.01 # final OneCycleLR learning rate (lr0 * lrf)
|
8 |
+
momentum: 0.937 # SGD momentum/Adam beta1
|
9 |
+
weight_decay: 0.0005 # optimizer weight decay 5e-4
|
10 |
+
warmup_epochs: 3.0 # warmup epochs (fractions ok)
|
11 |
+
warmup_momentum: 0.8 # warmup initial momentum
|
12 |
+
warmup_bias_lr: 0.1 # warmup initial bias lr
|
13 |
+
box: 0.05 # box loss gain
|
14 |
+
cls: 0.5 # cls loss gain
|
15 |
+
cls_pw: 1.0 # cls BCELoss positive_weight
|
16 |
+
obj: 1.0 # obj loss gain (scale with pixels)
|
17 |
+
obj_pw: 1.0 # obj BCELoss positive_weight
|
18 |
+
iou_t: 0.20 # IoU training threshold
|
19 |
+
anchor_t: 4.0 # anchor-multiple threshold
|
20 |
+
# anchors: 3 # anchors per output layer (0 to ignore)
|
21 |
+
fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)
|
22 |
+
hsv_h: 0.015 # image HSV-Hue augmentation (fraction)
|
23 |
+
hsv_s: 0.7 # image HSV-Saturation augmentation (fraction)
|
24 |
+
hsv_v: 0.4 # image HSV-Value augmentation (fraction)
|
25 |
+
degrees: 0.0 # image rotation (+/- deg)
|
26 |
+
translate: 0.1 # image translation (+/- fraction)
|
27 |
+
scale: 0.5 # image scale (+/- gain)
|
28 |
+
shear: 0.0 # image shear (+/- deg)
|
29 |
+
perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
|
30 |
+
flipud: 0.0 # image flip up-down (probability)
|
31 |
+
fliplr: 0.5 # image flip left-right (probability)
|
32 |
+
mosaic: 1.0 # image mosaic (probability)
|
33 |
+
mixup: 0.0 # image mixup (probability)
|
34 |
+
copy_paste: 0.0 # segment copy-paste (probability)
|
data/hyps/hyp.scratch.yaml
CHANGED
@@ -4,7 +4,7 @@
|
|
4 |
# See tutorials for hyperparameter evolution https://github.com/ultralytics/yolov5#tutorials
|
5 |
|
6 |
lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)
|
7 |
-
lrf: 0.
|
8 |
momentum: 0.937 # SGD momentum/Adam beta1
|
9 |
weight_decay: 0.0005 # optimizer weight decay 5e-4
|
10 |
warmup_epochs: 3.0 # warmup epochs (fractions ok)
|
|
|
4 |
# See tutorials for hyperparameter evolution https://github.com/ultralytics/yolov5#tutorials
|
5 |
|
6 |
lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)
|
7 |
+
lrf: 0.1 # final OneCycleLR learning rate (lr0 * lrf)
|
8 |
momentum: 0.937 # SGD momentum/Adam beta1
|
9 |
weight_decay: 0.0005 # optimizer weight decay 5e-4
|
10 |
warmup_epochs: 3.0 # warmup epochs (fractions ok)
|
hubconf.py
CHANGED
@@ -70,6 +70,11 @@ def custom(path='path/to/model.pt', autoshape=True, verbose=True, device=None):
|
|
70 |
return _create(path, autoshape=autoshape, verbose=verbose, device=device)
|
71 |
|
72 |
|
|
|
|
|
|
|
|
|
|
|
73 |
def yolov5s(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
|
74 |
# YOLOv5-small model https://github.com/ultralytics/yolov5
|
75 |
return _create('yolov5s', pretrained, channels, classes, autoshape, verbose, device)
|
@@ -90,6 +95,11 @@ def yolov5x(pretrained=True, channels=3, classes=80, autoshape=True, verbose=Tru
|
|
90 |
return _create('yolov5x', pretrained, channels, classes, autoshape, verbose, device)
|
91 |
|
92 |
|
|
|
|
|
|
|
|
|
|
|
93 |
def yolov5s6(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
|
94 |
# YOLOv5-small-P6 model https://github.com/ultralytics/yolov5
|
95 |
return _create('yolov5s6', pretrained, channels, classes, autoshape, verbose, device)
|
|
|
70 |
return _create(path, autoshape=autoshape, verbose=verbose, device=device)
|
71 |
|
72 |
|
73 |
+
def yolov5n(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
|
74 |
+
# YOLOv5-nano model https://github.com/ultralytics/yolov5
|
75 |
+
return _create('yolov5n', pretrained, channels, classes, autoshape, verbose, device)
|
76 |
+
|
77 |
+
|
78 |
def yolov5s(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
|
79 |
# YOLOv5-small model https://github.com/ultralytics/yolov5
|
80 |
return _create('yolov5s', pretrained, channels, classes, autoshape, verbose, device)
|
|
|
95 |
return _create('yolov5x', pretrained, channels, classes, autoshape, verbose, device)
|
96 |
|
97 |
|
98 |
+
def yolov5n6(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
|
99 |
+
# YOLOv5-nano-P6 model https://github.com/ultralytics/yolov5
|
100 |
+
return _create('yolov5n6', pretrained, channels, classes, autoshape, verbose, device)
|
101 |
+
|
102 |
+
|
103 |
def yolov5s6(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
|
104 |
# YOLOv5-small-P6 model https://github.com/ultralytics/yolov5
|
105 |
return _create('yolov5s6', pretrained, channels, classes, autoshape, verbose, device)
|
models/hub/yolov5l6.yaml
CHANGED
@@ -10,24 +10,24 @@ anchors:
|
|
10 |
- [140,301, 303,264, 238,542] # P5/32
|
11 |
- [436,615, 739,380, 925,792] # P6/64
|
12 |
|
13 |
-
# YOLOv5 backbone
|
14 |
backbone:
|
15 |
# [from, number, module, args]
|
16 |
-
[[-1, 1,
|
17 |
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
18 |
[-1, 3, C3, [128]],
|
19 |
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
20 |
-
[-1,
|
21 |
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
22 |
[-1, 9, C3, [512]],
|
23 |
[-1, 1, Conv, [768, 3, 2]], # 7-P5/32
|
24 |
[-1, 3, C3, [768]],
|
25 |
[-1, 1, Conv, [1024, 3, 2]], # 9-P6/64
|
26 |
-
[-1,
|
27 |
-
[-1,
|
28 |
]
|
29 |
|
30 |
-
# YOLOv5 head
|
31 |
head:
|
32 |
[[-1, 1, Conv, [768, 1, 1]],
|
33 |
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
|
|
10 |
- [140,301, 303,264, 238,542] # P5/32
|
11 |
- [436,615, 739,380, 925,792] # P6/64
|
12 |
|
13 |
+
# YOLOv5 v6.0 backbone
|
14 |
backbone:
|
15 |
# [from, number, module, args]
|
16 |
+
[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
|
17 |
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
18 |
[-1, 3, C3, [128]],
|
19 |
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
20 |
+
[-1, 6, C3, [256]],
|
21 |
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
22 |
[-1, 9, C3, [512]],
|
23 |
[-1, 1, Conv, [768, 3, 2]], # 7-P5/32
|
24 |
[-1, 3, C3, [768]],
|
25 |
[-1, 1, Conv, [1024, 3, 2]], # 9-P6/64
|
26 |
+
[-1, 3, C3, [1024]],
|
27 |
+
[-1, 1, SPPF, [1024, 5]], # 11
|
28 |
]
|
29 |
|
30 |
+
# YOLOv5 v6.0 head
|
31 |
head:
|
32 |
[[-1, 1, Conv, [768, 1, 1]],
|
33 |
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
models/hub/yolov5m6.yaml
CHANGED
@@ -10,24 +10,24 @@ anchors:
|
|
10 |
- [140,301, 303,264, 238,542] # P5/32
|
11 |
- [436,615, 739,380, 925,792] # P6/64
|
12 |
|
13 |
-
# YOLOv5 backbone
|
14 |
backbone:
|
15 |
# [from, number, module, args]
|
16 |
-
[[-1, 1,
|
17 |
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
18 |
[-1, 3, C3, [128]],
|
19 |
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
20 |
-
[-1,
|
21 |
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
22 |
[-1, 9, C3, [512]],
|
23 |
[-1, 1, Conv, [768, 3, 2]], # 7-P5/32
|
24 |
[-1, 3, C3, [768]],
|
25 |
[-1, 1, Conv, [1024, 3, 2]], # 9-P6/64
|
26 |
-
[-1,
|
27 |
-
[-1,
|
28 |
]
|
29 |
|
30 |
-
# YOLOv5 head
|
31 |
head:
|
32 |
[[-1, 1, Conv, [768, 1, 1]],
|
33 |
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
|
|
10 |
- [140,301, 303,264, 238,542] # P5/32
|
11 |
- [436,615, 739,380, 925,792] # P6/64
|
12 |
|
13 |
+
# YOLOv5 v6.0 backbone
|
14 |
backbone:
|
15 |
# [from, number, module, args]
|
16 |
+
[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
|
17 |
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
18 |
[-1, 3, C3, [128]],
|
19 |
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
20 |
+
[-1, 6, C3, [256]],
|
21 |
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
22 |
[-1, 9, C3, [512]],
|
23 |
[-1, 1, Conv, [768, 3, 2]], # 7-P5/32
|
24 |
[-1, 3, C3, [768]],
|
25 |
[-1, 1, Conv, [1024, 3, 2]], # 9-P6/64
|
26 |
+
[-1, 3, C3, [1024]],
|
27 |
+
[-1, 1, SPPF, [1024, 5]], # 11
|
28 |
]
|
29 |
|
30 |
+
# YOLOv5 v6.0 head
|
31 |
head:
|
32 |
[[-1, 1, Conv, [768, 1, 1]],
|
33 |
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
models/hub/yolov5n6.yaml
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 π by Ultralytics, GPL-3.0 license
|
2 |
+
|
3 |
+
# Parameters
|
4 |
+
nc: 80 # number of classes
|
5 |
+
depth_multiple: 0.33 # model depth multiple
|
6 |
+
width_multiple: 0.25 # layer channel multiple
|
7 |
+
anchors:
|
8 |
+
- [19,27, 44,40, 38,94] # P3/8
|
9 |
+
- [96,68, 86,152, 180,137] # P4/16
|
10 |
+
- [140,301, 303,264, 238,542] # P5/32
|
11 |
+
- [436,615, 739,380, 925,792] # P6/64
|
12 |
+
|
13 |
+
# YOLOv5 v6.0 backbone
|
14 |
+
backbone:
|
15 |
+
# [from, number, module, args]
|
16 |
+
[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
|
17 |
+
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
18 |
+
[-1, 3, C3, [128]],
|
19 |
+
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
20 |
+
[-1, 6, C3, [256]],
|
21 |
+
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
22 |
+
[-1, 9, C3, [512]],
|
23 |
+
[-1, 1, Conv, [768, 3, 2]], # 7-P5/32
|
24 |
+
[-1, 3, C3, [768]],
|
25 |
+
[-1, 1, Conv, [1024, 3, 2]], # 9-P6/64
|
26 |
+
[-1, 3, C3, [1024]],
|
27 |
+
[-1, 1, SPPF, [1024, 5]], # 11
|
28 |
+
]
|
29 |
+
|
30 |
+
# YOLOv5 v6.0 head
|
31 |
+
head:
|
32 |
+
[[-1, 1, Conv, [768, 1, 1]],
|
33 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
34 |
+
[[-1, 8], 1, Concat, [1]], # cat backbone P5
|
35 |
+
[-1, 3, C3, [768, False]], # 15
|
36 |
+
|
37 |
+
[-1, 1, Conv, [512, 1, 1]],
|
38 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
39 |
+
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
40 |
+
[-1, 3, C3, [512, False]], # 19
|
41 |
+
|
42 |
+
[-1, 1, Conv, [256, 1, 1]],
|
43 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
44 |
+
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
45 |
+
[-1, 3, C3, [256, False]], # 23 (P3/8-small)
|
46 |
+
|
47 |
+
[-1, 1, Conv, [256, 3, 2]],
|
48 |
+
[[-1, 20], 1, Concat, [1]], # cat head P4
|
49 |
+
[-1, 3, C3, [512, False]], # 26 (P4/16-medium)
|
50 |
+
|
51 |
+
[-1, 1, Conv, [512, 3, 2]],
|
52 |
+
[[-1, 16], 1, Concat, [1]], # cat head P5
|
53 |
+
[-1, 3, C3, [768, False]], # 29 (P5/32-large)
|
54 |
+
|
55 |
+
[-1, 1, Conv, [768, 3, 2]],
|
56 |
+
[[-1, 12], 1, Concat, [1]], # cat head P6
|
57 |
+
[-1, 3, C3, [1024, False]], # 32 (P6/64-xlarge)
|
58 |
+
|
59 |
+
[[23, 26, 29, 32], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6)
|
60 |
+
]
|
models/hub/yolov5s6.yaml
CHANGED
@@ -10,24 +10,24 @@ anchors:
|
|
10 |
- [140,301, 303,264, 238,542] # P5/32
|
11 |
- [436,615, 739,380, 925,792] # P6/64
|
12 |
|
13 |
-
# YOLOv5 backbone
|
14 |
backbone:
|
15 |
# [from, number, module, args]
|
16 |
-
[[-1, 1,
|
17 |
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
18 |
[-1, 3, C3, [128]],
|
19 |
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
20 |
-
[-1,
|
21 |
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
22 |
[-1, 9, C3, [512]],
|
23 |
[-1, 1, Conv, [768, 3, 2]], # 7-P5/32
|
24 |
[-1, 3, C3, [768]],
|
25 |
[-1, 1, Conv, [1024, 3, 2]], # 9-P6/64
|
26 |
-
[-1,
|
27 |
-
[-1,
|
28 |
]
|
29 |
|
30 |
-
# YOLOv5 head
|
31 |
head:
|
32 |
[[-1, 1, Conv, [768, 1, 1]],
|
33 |
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
|
|
10 |
- [140,301, 303,264, 238,542] # P5/32
|
11 |
- [436,615, 739,380, 925,792] # P6/64
|
12 |
|
13 |
+
# YOLOv5 v6.0 backbone
|
14 |
backbone:
|
15 |
# [from, number, module, args]
|
16 |
+
[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
|
17 |
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
18 |
[-1, 3, C3, [128]],
|
19 |
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
20 |
+
[-1, 6, C3, [256]],
|
21 |
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
22 |
[-1, 9, C3, [512]],
|
23 |
[-1, 1, Conv, [768, 3, 2]], # 7-P5/32
|
24 |
[-1, 3, C3, [768]],
|
25 |
[-1, 1, Conv, [1024, 3, 2]], # 9-P6/64
|
26 |
+
[-1, 3, C3, [1024]],
|
27 |
+
[-1, 1, SPPF, [1024, 5]], # 11
|
28 |
]
|
29 |
|
30 |
+
# YOLOv5 v6.0 head
|
31 |
head:
|
32 |
[[-1, 1, Conv, [768, 1, 1]],
|
33 |
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
models/hub/yolov5x6.yaml
CHANGED
@@ -10,24 +10,24 @@ anchors:
|
|
10 |
- [140,301, 303,264, 238,542] # P5/32
|
11 |
- [436,615, 739,380, 925,792] # P6/64
|
12 |
|
13 |
-
# YOLOv5 backbone
|
14 |
backbone:
|
15 |
# [from, number, module, args]
|
16 |
-
[[-1, 1,
|
17 |
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
18 |
[-1, 3, C3, [128]],
|
19 |
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
20 |
-
[-1,
|
21 |
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
22 |
[-1, 9, C3, [512]],
|
23 |
[-1, 1, Conv, [768, 3, 2]], # 7-P5/32
|
24 |
[-1, 3, C3, [768]],
|
25 |
[-1, 1, Conv, [1024, 3, 2]], # 9-P6/64
|
26 |
-
[-1,
|
27 |
-
[-1,
|
28 |
]
|
29 |
|
30 |
-
# YOLOv5 head
|
31 |
head:
|
32 |
[[-1, 1, Conv, [768, 1, 1]],
|
33 |
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
|
|
10 |
- [140,301, 303,264, 238,542] # P5/32
|
11 |
- [436,615, 739,380, 925,792] # P6/64
|
12 |
|
13 |
+
# YOLOv5 v6.0 backbone
|
14 |
backbone:
|
15 |
# [from, number, module, args]
|
16 |
+
[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
|
17 |
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
18 |
[-1, 3, C3, [128]],
|
19 |
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
20 |
+
[-1, 6, C3, [256]],
|
21 |
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
22 |
[-1, 9, C3, [512]],
|
23 |
[-1, 1, Conv, [768, 3, 2]], # 7-P5/32
|
24 |
[-1, 3, C3, [768]],
|
25 |
[-1, 1, Conv, [1024, 3, 2]], # 9-P6/64
|
26 |
+
[-1, 3, C3, [1024]],
|
27 |
+
[-1, 1, SPPF, [1024, 5]], # 11
|
28 |
]
|
29 |
|
30 |
+
# YOLOv5 v6.0 head
|
31 |
head:
|
32 |
[[-1, 1, Conv, [768, 1, 1]],
|
33 |
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
models/yolov5l.yaml
CHANGED
@@ -9,22 +9,22 @@ anchors:
|
|
9 |
- [30,61, 62,45, 59,119] # P4/16
|
10 |
- [116,90, 156,198, 373,326] # P5/32
|
11 |
|
12 |
-
# YOLOv5 backbone
|
13 |
backbone:
|
14 |
# [from, number, module, args]
|
15 |
-
[[-1, 1,
|
16 |
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
17 |
[-1, 3, C3, [128]],
|
18 |
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
19 |
-
[-1,
|
20 |
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
21 |
[-1, 9, C3, [512]],
|
22 |
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
|
23 |
-
[-1,
|
24 |
-
[-1,
|
25 |
]
|
26 |
|
27 |
-
# YOLOv5 head
|
28 |
head:
|
29 |
[[-1, 1, Conv, [512, 1, 1]],
|
30 |
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
|
|
9 |
- [30,61, 62,45, 59,119] # P4/16
|
10 |
- [116,90, 156,198, 373,326] # P5/32
|
11 |
|
12 |
+
# YOLOv5 v6.0 backbone
|
13 |
backbone:
|
14 |
# [from, number, module, args]
|
15 |
+
[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
|
16 |
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
17 |
[-1, 3, C3, [128]],
|
18 |
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
19 |
+
[-1, 6, C3, [256]],
|
20 |
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
21 |
[-1, 9, C3, [512]],
|
22 |
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
|
23 |
+
[-1, 3, C3, [1024]],
|
24 |
+
[-1, 1, SPPF, [1024, 5]], # 9
|
25 |
]
|
26 |
|
27 |
+
# YOLOv5 v6.0 head
|
28 |
head:
|
29 |
[[-1, 1, Conv, [512, 1, 1]],
|
30 |
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
models/yolov5m.yaml
CHANGED
@@ -9,22 +9,22 @@ anchors:
|
|
9 |
- [30,61, 62,45, 59,119] # P4/16
|
10 |
- [116,90, 156,198, 373,326] # P5/32
|
11 |
|
12 |
-
# YOLOv5 backbone
|
13 |
backbone:
|
14 |
# [from, number, module, args]
|
15 |
-
[[-1, 1,
|
16 |
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
17 |
[-1, 3, C3, [128]],
|
18 |
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
19 |
-
[-1,
|
20 |
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
21 |
[-1, 9, C3, [512]],
|
22 |
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
|
23 |
-
[-1,
|
24 |
-
[-1,
|
25 |
]
|
26 |
|
27 |
-
# YOLOv5 head
|
28 |
head:
|
29 |
[[-1, 1, Conv, [512, 1, 1]],
|
30 |
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
|
|
9 |
- [30,61, 62,45, 59,119] # P4/16
|
10 |
- [116,90, 156,198, 373,326] # P5/32
|
11 |
|
12 |
+
# YOLOv5 v6.0 backbone
|
13 |
backbone:
|
14 |
# [from, number, module, args]
|
15 |
+
[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
|
16 |
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
17 |
[-1, 3, C3, [128]],
|
18 |
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
19 |
+
[-1, 6, C3, [256]],
|
20 |
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
21 |
[-1, 9, C3, [512]],
|
22 |
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
|
23 |
+
[-1, 3, C3, [1024]],
|
24 |
+
[-1, 1, SPPF, [1024, 5]], # 9
|
25 |
]
|
26 |
|
27 |
+
# YOLOv5 v6.0 head
|
28 |
head:
|
29 |
[[-1, 1, Conv, [512, 1, 1]],
|
30 |
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
models/yolov5n.yaml
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 π by Ultralytics, GPL-3.0 license
|
2 |
+
|
3 |
+
# Parameters
|
4 |
+
nc: 80 # number of classes
|
5 |
+
depth_multiple: 0.33 # model depth multiple
|
6 |
+
width_multiple: 0.25 # layer channel multiple
|
7 |
+
anchors:
|
8 |
+
- [10,13, 16,30, 33,23] # P3/8
|
9 |
+
- [30,61, 62,45, 59,119] # P4/16
|
10 |
+
- [116,90, 156,198, 373,326] # P5/32
|
11 |
+
|
12 |
+
# YOLOv5 v6.0 backbone
|
13 |
+
backbone:
|
14 |
+
# [from, number, module, args]
|
15 |
+
[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
|
16 |
+
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
17 |
+
[-1, 3, C3, [128]],
|
18 |
+
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
19 |
+
[-1, 6, C3, [256]],
|
20 |
+
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
21 |
+
[-1, 9, C3, [512]],
|
22 |
+
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
|
23 |
+
[-1, 3, C3, [1024]],
|
24 |
+
[-1, 1, SPPF, [1024, 5]], # 9
|
25 |
+
]
|
26 |
+
|
27 |
+
# YOLOv5 v6.0 head
|
28 |
+
head:
|
29 |
+
[[-1, 1, Conv, [512, 1, 1]],
|
30 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
31 |
+
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
32 |
+
[-1, 3, C3, [512, False]], # 13
|
33 |
+
|
34 |
+
[-1, 1, Conv, [256, 1, 1]],
|
35 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
36 |
+
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
37 |
+
[-1, 3, C3, [256, False]], # 17 (P3/8-small)
|
38 |
+
|
39 |
+
[-1, 1, Conv, [256, 3, 2]],
|
40 |
+
[[-1, 14], 1, Concat, [1]], # cat head P4
|
41 |
+
[-1, 3, C3, [512, False]], # 20 (P4/16-medium)
|
42 |
+
|
43 |
+
[-1, 1, Conv, [512, 3, 2]],
|
44 |
+
[[-1, 10], 1, Concat, [1]], # cat head P5
|
45 |
+
[-1, 3, C3, [1024, False]], # 23 (P5/32-large)
|
46 |
+
|
47 |
+
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
|
48 |
+
]
|
models/yolov5s.yaml
CHANGED
@@ -9,22 +9,22 @@ anchors:
|
|
9 |
- [30,61, 62,45, 59,119] # P4/16
|
10 |
- [116,90, 156,198, 373,326] # P5/32
|
11 |
|
12 |
-
# YOLOv5 backbone
|
13 |
backbone:
|
14 |
# [from, number, module, args]
|
15 |
-
[[-1, 1,
|
16 |
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
17 |
[-1, 3, C3, [128]],
|
18 |
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
19 |
-
[-1,
|
20 |
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
21 |
[-1, 9, C3, [512]],
|
22 |
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
|
23 |
-
[-1,
|
24 |
-
[-1,
|
25 |
]
|
26 |
|
27 |
-
# YOLOv5 head
|
28 |
head:
|
29 |
[[-1, 1, Conv, [512, 1, 1]],
|
30 |
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
|
|
9 |
- [30,61, 62,45, 59,119] # P4/16
|
10 |
- [116,90, 156,198, 373,326] # P5/32
|
11 |
|
12 |
+
# YOLOv5 v6.0 backbone
|
13 |
backbone:
|
14 |
# [from, number, module, args]
|
15 |
+
[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
|
16 |
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
17 |
[-1, 3, C3, [128]],
|
18 |
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
19 |
+
[-1, 6, C3, [256]],
|
20 |
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
21 |
[-1, 9, C3, [512]],
|
22 |
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
|
23 |
+
[-1, 3, C3, [1024]],
|
24 |
+
[-1, 1, SPPF, [1024, 5]], # 9
|
25 |
]
|
26 |
|
27 |
+
# YOLOv5 v6.0 head
|
28 |
head:
|
29 |
[[-1, 1, Conv, [512, 1, 1]],
|
30 |
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
models/yolov5x.yaml
CHANGED
@@ -9,22 +9,22 @@ anchors:
|
|
9 |
- [30,61, 62,45, 59,119] # P4/16
|
10 |
- [116,90, 156,198, 373,326] # P5/32
|
11 |
|
12 |
-
# YOLOv5 backbone
|
13 |
backbone:
|
14 |
# [from, number, module, args]
|
15 |
-
[[-1, 1,
|
16 |
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
17 |
[-1, 3, C3, [128]],
|
18 |
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
19 |
-
[-1,
|
20 |
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
21 |
[-1, 9, C3, [512]],
|
22 |
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
|
23 |
-
[-1,
|
24 |
-
[-1,
|
25 |
]
|
26 |
|
27 |
-
# YOLOv5 head
|
28 |
head:
|
29 |
[[-1, 1, Conv, [512, 1, 1]],
|
30 |
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
|
|
9 |
- [30,61, 62,45, 59,119] # P4/16
|
10 |
- [116,90, 156,198, 373,326] # P5/32
|
11 |
|
12 |
+
# YOLOv5 v6.0 backbone
|
13 |
backbone:
|
14 |
# [from, number, module, args]
|
15 |
+
[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
|
16 |
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
17 |
[-1, 3, C3, [128]],
|
18 |
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
19 |
+
[-1, 6, C3, [256]],
|
20 |
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
21 |
[-1, 9, C3, [512]],
|
22 |
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
|
23 |
+
[-1, 3, C3, [1024]],
|
24 |
+
[-1, 1, SPPF, [1024, 5]], # 9
|
25 |
]
|
26 |
|
27 |
+
# YOLOv5 v6.0 head
|
28 |
head:
|
29 |
[[-1, 1, Conv, [512, 1, 1]],
|
30 |
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|