glenn-jocher commited on
Commit
9c7bb5a
1 Parent(s): c0d3f80

ACON Activation batch-size 1 bug patch (#2901)

Browse files

* ACON Activation batch-size 1 bug path

This is not a great solution to https://github.com/nmaac/acon/issues/4 but it's all I could think of at the moment.

WARNING: YOLOv5 models with MetaAconC() activations are incapable of running inference at batch-size 1 properly due to a known bug in https://github.com/nmaac/acon/issues/4 with no known solution.

* Update activations.py

* Update activations.py

* Update activations.py

* Update activations.py

Files changed (1) hide show
  1. utils/activations.py +7 -5
utils/activations.py CHANGED
@@ -84,13 +84,15 @@ class MetaAconC(nn.Module):
84
  c2 = max(r, c1 // r)
85
  self.p1 = nn.Parameter(torch.randn(1, c1, 1, 1))
86
  self.p2 = nn.Parameter(torch.randn(1, c1, 1, 1))
87
- self.fc1 = nn.Conv2d(c1, c2, k, s, bias=False)
88
- self.bn1 = nn.BatchNorm2d(c2)
89
- self.fc2 = nn.Conv2d(c2, c1, k, s, bias=False)
90
- self.bn2 = nn.BatchNorm2d(c1)
91
 
92
  def forward(self, x):
93
  y = x.mean(dim=2, keepdims=True).mean(dim=3, keepdims=True)
94
- beta = torch.sigmoid(self.bn2(self.fc2(self.bn1(self.fc1(y)))))
 
 
95
  dpx = (self.p1 - self.p2) * x
96
  return dpx * torch.sigmoid(beta * dpx) + self.p2 * x
 
84
  c2 = max(r, c1 // r)
85
  self.p1 = nn.Parameter(torch.randn(1, c1, 1, 1))
86
  self.p2 = nn.Parameter(torch.randn(1, c1, 1, 1))
87
+ self.fc1 = nn.Conv2d(c1, c2, k, s, bias=True)
88
+ self.fc2 = nn.Conv2d(c2, c1, k, s, bias=True)
89
+ # self.bn1 = nn.BatchNorm2d(c2)
90
+ # self.bn2 = nn.BatchNorm2d(c1)
91
 
92
  def forward(self, x):
93
  y = x.mean(dim=2, keepdims=True).mean(dim=3, keepdims=True)
94
+ # batch-size 1 bug/instabilities https://github.com/ultralytics/yolov5/issues/2891
95
+ # beta = torch.sigmoid(self.bn2(self.fc2(self.bn1(self.fc1(y))))) # bug/unstable
96
+ beta = torch.sigmoid(self.fc2(self.fc1(y))) # bug patch BN layers removed
97
  dpx = (self.p1 - self.p2) * x
98
  return dpx * torch.sigmoid(beta * dpx) + self.p2 * x