Move hyp and opt yaml save to top of train()
Browse filesFixes bug where scaled values were saved in hyp.yaml, which would cause continuity issues with --resume
train.py
CHANGED
@@ -52,6 +52,12 @@ def train(hyp):
|
|
52 |
best = wdir + 'best.pt'
|
53 |
results_file = log_dir + os.sep + 'results.txt'
|
54 |
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
epochs = opt.epochs # 300
|
56 |
batch_size = opt.batch_size # 64
|
57 |
weights = opt.weights # initial training weights
|
@@ -171,12 +177,6 @@ def train(hyp):
|
|
171 |
model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) # attach class weights
|
172 |
model.names = data_dict['names']
|
173 |
|
174 |
-
# Save run settings
|
175 |
-
with open(Path(log_dir) / 'hyp.yaml', 'w') as f:
|
176 |
-
yaml.dump(hyp, f, sort_keys=False)
|
177 |
-
with open(Path(log_dir) / 'opt.yaml', 'w') as f:
|
178 |
-
yaml.dump(vars(opt), f, sort_keys=False)
|
179 |
-
|
180 |
# Class frequency
|
181 |
labels = np.concatenate(dataset.labels, 0)
|
182 |
c = torch.tensor(labels[:, 0]) # classes
|
|
|
52 |
best = wdir + 'best.pt'
|
53 |
results_file = log_dir + os.sep + 'results.txt'
|
54 |
|
55 |
+
# Save run settings
|
56 |
+
with open(Path(log_dir) / 'hyp.yaml', 'w') as f:
|
57 |
+
yaml.dump(hyp, f, sort_keys=False)
|
58 |
+
with open(Path(log_dir) / 'opt.yaml', 'w') as f:
|
59 |
+
yaml.dump(vars(opt), f, sort_keys=False)
|
60 |
+
|
61 |
epochs = opt.epochs # 300
|
62 |
batch_size = opt.batch_size # 64
|
63 |
weights = opt.weights # initial training weights
|
|
|
177 |
model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) # attach class weights
|
178 |
model.names = data_dict['names']
|
179 |
|
|
|
|
|
|
|
|
|
|
|
|
|
180 |
# Class frequency
|
181 |
labels = np.concatenate(dataset.labels, 0)
|
182 |
c = torch.tensor(labels[:, 0]) # classes
|